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Abstract

A compact bordered Klein surface X of genus g ≥ 2 has at most
12(g − 1) automorphisms. A bordered surface for which the bound is
attained is said to have maximal symmetry and its full automorphism
group is called an M*-group. For M*-groups G and H, we construct
a subdirect product L of G and H that is an M*-group. We show that
there is a normal subgroup of G whose index is the same as the index
of L in the direct product G × H. This general result is specialized
to give results about the index of the subdirect product L in the direct
product G × H for M*-groups G and H. Then we give a number of
sufficient conditions for L to equal G × H and to conclude that the
direct product is an M*-group. For example, let G be an M*-group
that acts on a bordered Klein surface X. The elements of G that fix a
boundary component of X form a dihedral subgroup of order 2q. The
number q is called an action index of G. If G and H have relatively
prime action indices and one of them is perfect, then the direct product
of G and H is an M*-group.

1 Introduction.

A compact bordered Klein surface X of genus g ≥ 2 has at most 12(g − 1)
automorphisms [10]. A bordered surface for which the bound is attained
is said to have maximal symmetry [8]. The full automorphism group of a
surface with maximal symmetry is called an M*-group [11].
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There are infinitely many M*-groups, and some important groups are
known to be M*-groups. For example, all large alternating groups and all
large symmetric groups are M*-groups [3], as well as most of the groups
PSL(2, q) [19]. In addition, there are constructions that give extensions of
abelian groups by a particular M*-group G; here see [8, §4]. These construc-
tions do not produce a presentation of the extension, however. On the other
hand, there is a construction that forms an M*-group, with complete presen-
tation, from a 2-generator group that admits an action of D6, the smallest
M*-group [14].

Here we consider a natural way to construct a larger M*-group from
two M*-groups. Our approach uses the concept of a subdirect product [17].
The basic construction is quite general, with applications possible to several
different types of groups. The applications we have in mind are to M*-
groups, however, and we begin with some observations about M*-groups
and the bordered surfaces on which they act. We subsequently describe the
construction in the most general way.

Now let G and H be M*-groups. Then the construction gives a subgroup
L of the direct product G×H that is a subdirect product of G and H, and
it is easy to see that the “new” group L is an M*-group. The construction
yields a method to compute |L| if there are complete presentations for the
M*-groups G and H. In general, however, |L| is not immediately apparent.
We focus on cases in which the subdirect product L has small index in G×
H and there is a condition that allows the easy determination of |L|. We
consider two conditions, one involving the genus actions of the M*-groups
and one involving abelian quotient groups. First we obtain some results
about subdirect products of M*-groups, including a characterization of the
M*-groups that are subdirect products of two smaller M*-groups.

Finally we consider direct products of M*-groups. We obtain necessary
conditions for an M*-group to be the direct product of two M*-groups. In
addition to an easy algebraic necessary condition, there is a necessary con-
dition involving the genus actions of the M*-groups; one of the two groups
must act on a non-orientable surface. We obtain some general sufficient con-
ditions for the direct product of two M*-groups G and H to be an M*-group.
These conditions can be used to show that if G is a solvable M*-group and
H is a perfect M*-group, then G×H is also an M*-group. Further, if G and
H are non-isomorphic simple M*-groups, then G×H is an M*-group.
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2 M*-groups.

A finite group G is an M*-group [11] if it is generated by three distinct
non-trivial elements t, u, v which satisfy the relations

(1) t2 = u2 = v2 = (tu)2 = (tv)3 = 1.

The fundamental result about M*-groups is the following; see [11, 8].

Theorem A. The finite group G is an M*-group with partial presentation (1)
such that o(uv) = q if and only if G is the automorphism group of a bordered
Klein surface X with maximal symmetry and k boundary components, where

|G| = 2qk.

The connection between the order of uv and the associated action of the
M*-group G on a bordered surface was established in [8]. We will say that
the group G acts on X with index q. We will call q the index of the action
or say that q is an action index. In the action of the M*-group G on X,
each component of ∂X is fixed by a dihedral subgroup of G of order 2q [8,
§6]. Note that the index of an action of an M*-group determines the number
of boundary components but not the orientability of the surface on which
G acts. Indeed, it is possible for an M*-group to act on two topologically
different surfaces with the same index. For an interesting example, see [20].

Theorem A was established using NEC groups. Let ∆ be the NEC group
with signature (0; +; [ ]; {(2, 2, 2, 3)}). The group ∆ is called the extended
quadrilateral group and denoted by Γ[2, 2, 2, 3]. The finite group G is the
automorphism group of a bordered Klein surface X with maximal symmetry
if and only if there is a homomorphism α : ∆ → G onto G such that ker(α) is
a bordered surface group. Further the surface X = D/ ker(α), where D is the
open upper half-plane; X has a non-empty boundary since ker(α) contains
reflections (but no other elements of finite order). For more details, see [11,
pp. 4-6].

An important alternative way to consider M*-groups is as quotients of
the extended modular group Γ. The group Γ has generators t, u and v and
defining relations (1) [6, pp. 85, 86]. It follows that a finite group of order at
least 12 is an M*-group if and only if it is a homomorphic image of Γ. Here
we treat M*-groups mainly as quotients of Γ. A good source for background
results on Γ is [9].
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There is a useful criterion for determining the orientability of the surface
X on which an M*-group acts. Let the M*-group G have standard generators
t, u and v satisfying (1), and let G+ = 〈tu, uv〉. Then we have the following
basic result.

Proposition 1. Let the M*-group G have a particular presentation of the
form (1) with associated action on the bordered surface X. Then X is ori-
entable if and only if G+ has index two in G.

For a proof see [2, p. 100]. If the surface X is orientable, then G+ is
the subgroup of orientation-preserving automorphisms of X. If X is non-
orientable, then G+ = G. We will often use this algebraic condition for the
orientability of X.

The commutator subgroup G′ = 〈tv, tu · tv · tu〉 [8, p. 278], and G′ ⊆ G+.
Further, the index [G+ : G′] is at most 2, since G+ = 〈G′, tu〉 and tu is
an element of order 2. The commutator quotient group of an M*-group is
always a quotient of Z2 × Z2 , and we have

G′ ⊆ G+ ⊆ G,

where each subgroup has index either 1 or 2 in the next larger group. There
are four possibilities, all of which can occur. However, using Proposition 1
we can make the following observation.

Proposition 2. If an M*-group G acts on an non-orientable surface with
maximal symmetry, then [G : G′] ≤ 2.

Proposition 2 may also be easily obtained using the orienting double. Let
X be a non-orientable bordered Klein surface of genus g with k boundary
components. Associated with X in a natural way is its orienting double Xo

[1, pp. 37-41], an orientable bordered surface of genus go = 2g − 1 with
2k boundary components. The surface Xo has an antianalytic involution
σ : Xo → Xo such that Xo/σ = X. The automorphism groups of X and Xo

are intimately connected [1, p.79]:

A(X) ∼= {f ∈ A+(Xo)|fσ = f}.

Let G = A(X). Then A(Xo) contains a subgroup which is isomorphic to
Z2 ×G ∼= 〈σ〉 ×G.
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In particular, suppose the M*-group G acts on a non-orientable surface
with maximal symmetry, so that G = A(X). Then it follows that Xo has
maximal symmetry and Z2 × G is also an M*-group. Thus Proposition 2
holds, since the commutator subgroup of Z2 ×G has index at most 4.

The M*-groups are closely related to a family of abstract groups intro-
duced by Coxeter [5]. Let Gn,q,r be the group with generators A, B and C
and defining relations

An = Bq = Cr = (AB)2 = (BC)2 = (CA)2 = (ABC)2 = 1.

If we set t = BC, u = CA, and v = BCA, then we obtain the presentation

t2 = u2 = v2 = (tu)2 = (tv)n = (uv)q = (tuv)r = 1.

Thus G is an M*-group if and only if G is a quotient of the group G3,q,r for
some q and r. The complete table of the known finite groups Gn,q,r is in [6,
pp. 139,140], but also see the recent article [7].

The following basic construction first appeared in [13, Th. 2].

Proposition 3. Suppose an M*-group G acts on X with odd action index
q. Then the group Z2 ×G is an M*-group that acts on a surface Q(X) with
index 2q. Further, the surface Q(X) is orientable if and only if the surface
X is orientable.

Proposition 3 has the following two easy algebraic consequences. These
two results also follow from the partial presentation (1) and Proposition 1.

Proposition 4. If an M*-group G has an odd action index, then [G : G′] ≤ 2.

Proposition 5. If an M*-group G acts on a non-orientable surface with odd
index, then G is perfect.

Proof. Let G act on the non-orientable surface X with odd index q. Then
Z2 ×G acts on the non-orientable surface Y = Q(X), by Proposition 3. But
then the M*-group Z2×Z2×G acts on Yo, and hence we must have G = G′.

Corollary 1. If an M*-group G is not perfect and G acts on a non-orientable
surface with maximal symmetry, then the index of the action must be even.

There is a simple, but useful, way of obtaining a second action index for
an M*-group.
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Proposition 6. Let G be an M*-group with generators t, u and v satisfying
(1) and action index q = o(uv). If r = o(tuv), then r is also the index of an
action of G.

Proposition 6 was established in [12, p. 24] by noting that t, u′ = tu and
v form another set of generators for the M*-group G. Proposition 6 has the
following consequence.

Proposition 7. If an M*-group G has odd action index q, then G acts on
a non-orientable surface with maximal symmetry (not necessarily with index
q).

Proof. By Proposition 6, G has a presentation in which o(tuv) = q is odd.
But then the involutions t, u and v are in G+, and the surface on which G
acts with this presentation must be non-orientable, by Proposition 1.

For example, PGL(2, 7) ∼= G3,7,8 ∼= G3,8,7 [6, p. 139] has action indices 7
and 8. The action with index 8 is on a non-orientable surface [13, p. 385].

By also including the order of the group element tuv, we have more in-
formation about the M*-group. For example, we have the following result.

Theorem 1. If an M*-group G has a presentation in which both the action
index q = o(uv) and r = o(tuv) are odd, then G is perfect.

Proof. Since q is odd, (uv)−1 = (uv)q−1 is a power of (uv)2, and thus uv is
an element of G′. But since r is also odd, we have t · uv in G′ as well. Now
t ∈ G′ = 〈tv, tu · tv · tu〉 and clearly G = G′.

Corollary 2. If each action index of the M*-group G is odd, then G is
perfect.

The converse of the corollary is false. The simple group PSL(2, 19), as a
quotient of G3,9,10 [6, p. 140], has action indices 9 and 10.

3 The General Construction.

Here we describe our general construction, which uses the concept of a sub-
direct product [17]. Another good reference for the material on subdirect
products is the textbook [18]. The basic construction is quite general, with
applications possible to several different types of groups. The principal ap-
plications we have in mind are to M*-groups, however.
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Definition 1. Let G and H be groups, and let pG and pH be the canonical
projections of the direct product G ×H onto G and H, respectively. A sub-
direct product of G and H is a subgroup L of the direct product G×H such
that pG(L) = G and pH(L) = H.

Suppose that Γ is a group. Let G and H be finite groups that are images
of Γ, say θ : Γ −→ G and φ : Γ −→ H, where both θ and φ are onto. Define
the map ψ : Γ −→ G×H by ψ(x) = (θ(x), φ(x)), and let L be the image of
Γ under ψ. Since θ and φ are onto G and H, respectively, it is clear that L
is a subdirect product of G and H.

Definition 2. Let ψ : Γ −→ G×H be a homomorphism such that L = Im(ψ)
is a subdirect product of G and H. Then define epimorphisms θ = pG◦ψ from
Γ onto G and φ = pH ◦ψ from Γ onto H. Define subgroups τG(ψ) = θ(ker(φ))
and τH(ψ) = φ(ker(θ)).

Clearly, τG(ψ)× τH(ψ) ⊂ Im(ψ) ⊂ G×H. It is easy to see that τG(ψ) is
a normal subgroup of G and τH(ψ) is a normal subgroup of H.

Proposition 8. The group τG(ψ) × {1} is the intersection of the groups
Im(ψ) and G×{1}. The group {1}× τH(ψ) is the intersection of Im(ψ) and
{1} ×H.

Proof. Suppose that w is a word in the group Γ such that ψ(w) ∈ G ×
{1}. Therefore φ(w) = 1 and w ∈ ker(φ). So θ(w) ∈ τG(ψ). The other
containment is clear.

Theorem 2. Let L = Im(ψ) be a subdirect product of G and H. Then
|G/τG(ψ)| = [G×H : L] = |H/τH(ψ)|.

Proof. Suppose that {g1, · · · , gt} is a complete set of coset representatives of
τG(ψ) in G. We will show that {(g1, 1), · · · , (gt, 1)} is a complete set of coset
representatives of L in G×H.

Suppose that (g, h) ∈ (G×H)−L. Since φ is onto H, there is an element
u of Γ such that φ(u) = h. Therefore, (θ(u), h) ∈ L = Im(ψ). There exists
x ∈ G such that g = xθ(u) and x = gjz, for some j and some element
z ∈ τG(ψ). Now we have

(g, h) = (x, 1)(θ(u), h) = (gj, 1)(z, 1)(θ(u), h) ∈ (gj, 1)L.

Now suppose that (gr, 1) ∈ (gs, 1)L. So (grg
−1
s , 1) ∈ L ∩ (G × {1}) and

grg
−1
s ∈ τG(ψ) by Proposition 8. It follows that r = s and so {(g1, 1), · · · , (gt, 1)}
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is a complete set of coset representatives of L in G×H. The same argument
with the group H finishes the proof.

Corollary 3. G/τG(ψ) ∼= H/τH(ψ) ∼= Γ/(ker(θ) · ker(φ)). In addition, if
n = |G| and m = |H|, then [G×H : L] divides the gcd(n,m) and hence |L|
is a multiple of lcm(n,m).

The following corollaries are worth noting. If one of the groups is a simple
group, then there are only two possibilities.

Corollary 4. Suppose that θ : Γ → G and φ : Γ → H are maps onto groups
G and H respectively. Define ψ : Γ → G ×H as ψ(x) = (θ(x), φ(x)). If H
is a simple group, then either ψ is onto G×H or H is a quotient of G.

Proof. If H is a simple group, then τH(ψ) is either trivial or all of H. If
τH(ψ) = H, then Im(ψ) = G×H. If τH(ψ) = 1, then

H = H/τH(ψ) ∼= G/τG(ψ)

by Corollary 3.

Corollary 5. Suppose that θ : Γ → G and φ : Γ → H are maps onto groups
G and H respectively. Define ψ : Γ → G ×H as ψ(x) = (θ(x), φ(x)). If no
non-trivial quotient of G is isomorphic to any quotient of H, then ψ is onto
G×H.

4 Applications to M*-groups.

In this section we apply the general construction to M*-groups. Let G be
an M*-group with generators t, u and v satisfying the partial presentation
(1), and let Γ be the extended modular group. Then there is a natural
homomorphism θ : Γ −→ G from Γ onto G. To obtain the action of G on a
bordered surface, let ∆ be the extended quadrilateral group Γ[2, 2, 2, 3]. The
NEC group ∆ has presentation

t1
2 = u1

2 = j2 = v1
2 = (t1u1)

2 = (u1j)
2 = (jv1)

2 = (t1v1)
3 = 1.

Then there is a natural homormorphism λ from ∆ onto Γ defined by λ(j) = 1,
λ(t1) = t, λ(u1) = u, λ(v1) = v. Then α = θ◦λmaps ∆ ontoG and ker(α) is a
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bordered surface group. Then G acts on the bordered surface X = D/ ker(α)
with action index q = o(uv).

Let H be a second M*-group with generators a, b and c satisfying the
partial presentation (1), where a, b and c correspond to t, u and v, respec-
tively. Then there is a homomorphism φ : Γ −→ H from Γ onto H. Then
β = φ◦λ maps ∆ onto H and H acts on the bordered surface Y = D/ ker(β)
with action index r = o(bc).

Now let L be the subgroup of the direct product G × H generated by
(t, a), (u, b) and (v, c). Then L is clearly a subdirect product of G and H.
The group L is Im(ψ), in the notation of §3. We record the following.

Proposition 9. The subdirect product L = Im(ψ) is an M*-group that acts
on a bordered surface W with index lcm(q, r). If either X or Y is orientable,
then W is orientable.

Proof. The natural generators T = (t, a), U = (u, b) and V = (v, c) clearly
satisfy (1) with o(UV ) = lcm(q, r). Hence L is an M*-group.

Let γ = ψ ◦ λ so that L acts on the surface W = D/ ker(γ) with index
lcm(q, r). But

α = θ ◦ λ = pG ◦ ψ ◦ λ = pG ◦ γ.

Thus ker(γ) ⊂ ker(α) and ker(α)/ ker(γ) ∼= ker(pG). Then the quotient
group G = L/ ker(pG) acts on the quotient surface W/ ker(pG). Now we have

W/ ker(pG) = (D/ ker(γ))/(ker(α)/ ker(γ)) = D/ ker(α) = X,

and the surface W is a full covering of X. In the same way, of course, W is
a full covering of Y . If either X or Y is orientable, then it follows that the
covering W is orientable as well [13, p. 375].

If both surfaces X and Y are non-orientable, than the surface W may be
orientable or not, as we shall see in the next section.

While this construction always produces an M*-group, the order of the
“new” M*-group is not immediately apparent. However, Theorem 2 gives a
method to compute |L| if there are complete presentations for the M*-groups
G and H. Suppose that G ∼= 〈t, u, v|t2, u2, v2, (tu)2, (tv)3,S 〉 where S is a
set of additional relators needed to define the finite group G. Then the
subgroup τH(ψ) is the normal closure in H of φ(S ). In fact, it is interesting
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that all that is needed to find |L| is a presentation for one of the two, say
G, together with a way to calculate the image of the relators of G under the
homomorphism φ : Γ −→ H.

For example, let G = G3,6,6 be the M*-group of order 108 [6, p. 139],
and let H = S4 = G3,3,4 be the second M*-group. The group G has presen-
tation (1) with the added relators (uv)6, (tuv)6. The normal closure in H
of 〈(uv)6, (tuv)6〉 = 〈(tuv)2〉 has order 4 so that the index |H/τH(ψ)| = 6.
Thus the construction yields the M*-group L = Im(ψ),which has order 432
by Theorem 2.

If one of the M*-groups, say H, is perfect, then any quotient group of H
is perfect and hence is either trivial or non-solvable. If this quotient is trivial,
then the subdirect product is the direct product; we return to this case in the
next section. Otherwise, this quotient involves a non-abelian simple group,
and the index of L in the direct product is relatively large.

Here we are primarily interested in cases in which the subdirect product
L has small index in G × H and there is a condition that allows the easy
determination of |L|. We consider two conditions, one involving the action
indices and one involving abelian quotient groups.

Theorem 3. Let G and H be M*-groups with action indices q and r, respec-
tively. If q and r are relatively prime, then G+ ⊆ τG(ψ) and consequently
G/τG(ψ) is trivial or isomorphic to Z2. Let d = gcd(q, r). If 2 ≤ d ≤ 5,
then G/τG(ψ) is isomorphic to a quotient of the abstract group [3, d]. These
groups are [3, 2] ∼= D6, [3, 3] ∼= S4, [3, 4] ∼= Z2 × S4, and [3, 5] ∼= Z2 × A5.

Proof. We use the notation of Proposition 11, that is, as an M*-group G has
generators t, u and v, while H has generators a, b and c. Then the subdirect
product L = Im(ψ) is generated by T = (t, a), U = (u, b) and V = (v, c).

Suppose 1 ≤ d ≤ 5. Then ((uv)d, 1) and (1, (bc)d) are in L. Now using
Proposition 8, we see thatG/τG(ψ) is an image of the group with presentation
(1) and added relation (uv)d = 1. For d > 1 these relations define the well-
known abstract group [3, d] [6, p. 37]. Hence G/τG(ψ) is an image of [3, d].

Finally, suppose q and r are relatively prime, that is, d = 1. Define
N = ker(θ)·ker(φ). Then uv ∈ N and uN = vN . Thus tuN = tvN , and since
these elements have relatively prime orders, it follows that tu ∈ N . There-
fore, by the isomorphism of Corollary 3, G+ ⊆ τG(ψ). Since [G : G+] ≤ 2,
G/τG(ψ) must be an image of Z2 .
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Now we consider a natural condition involving abelian quotient groups.
The following result allows the determination of |L| in the important case in
which the M*-groups G and H each have abelianization isomorphic to Z2.

Theorem 4. Let G and H be M*-groups with G/G′ ∼= H/H ′ ∼= Z2. Let θ :
Γ → G and φ : Γ → H be the epimorphisms of Γ onto G and H, respectively,
and construct the subdirect product L = Im(ψ). First, ker(θ) ⊆ 〈x〉Γ′ and
ker(φ) ⊆ 〈y〉Γ′, where x and y are in {t, u, tu}. If x = y, then [G×H : L] ≥ 2.
If x 6= y, then G/τG(ψ) is perfect.

Furthermore, suppose that for any normal subgroups N of G and M of H
such that G/N ∼= H/M , the quotient group G/N is abelian. If x = y, then
[G×H : L] = 2, and if x 6= y, then L = G×H.

Proof. It is easy to see that Γ/Γ′ = {Γ′, tΓ′, uΓ′, tuΓ′}. Since

Z2
∼= G/G′ ∼=

(
Γ

ker(θ)

)
/

(
ker(θ)Γ′

ker(θ)

)
∼=

Γ

ker(θ) · Γ′ ,

it follows that ker(θ) ⊆ 〈x〉Γ′ for x ∈ {t, u, tu}. Similarly, ker(φ) ⊆ 〈y〉Γ′ for
y ∈ {t, u, tu}. First assume x = y. Then (ker(θ) · ker(φ)) ⊆ 〈x〉Γ′, and by
Corollary 3,

(2) [G×H : L] = [G : τG(ψ)] = [Γ : (ker(θ) · ker(φ))] ≥ [Γ : 〈x〉Γ′] = 2.

Now assume x 6= y. Then (ker(θ)·ker(φ))Γ′ = Γ. Write J = ker(θ)·ker(φ).
Now we have Γ = JΓ′, and by Corollary 3, G/τG(ψ) ∼= Γ/J . But it is easy
to see that the quotient group Γ/J = JΓ′/J is perfect. Thus G/τG(ψ) is a
perfect group.

Finally, if the only quotients of G and of H which are isomorphic are
abelian, then G/τG(ψ) ∼= H/τH(ψ) is an abelian group. Hence, if x 6= y, then
G/τG(ψ) is trivial and L = G×H. Also, if x = y, then Γ/(ker(θ) · ker(φ)) is
abelian and therefore, Γ′ ⊆ (ker(θ) · ker(φ)) and [G×H : L] = 2.

In the case in which the only isomorphic quotients of G andH are abelian,
we develop a condition to determine whether [G×H : L] is 1 or 2. Suppose
θ : Γ → G is the epimorphism of Γ onto G, so that G has a particular
presentation as an M*-group. Consider the ordered triple of positive integers
( o(θ(uv)), o(θ(tuv)), o(θ(t(uv)2)) ) = (h, k, l); we call this ordered triple the
signifier of the presentation of G. Of course, a finite group may have several
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different presentations as an M*-group and, consequently, several different
signifiers.

Since (uv)h = (tuv)k = (t(uv)2)l = 1 in G, (uv)h, (tuv)k and (t(uv)2)l

are all elements of ker(θ). The following observations are easy to check. If
h is odd, then the element (uv)h is in the coset tuΓ′, and if h is even, it is
an element of Γ′. Similarly, if k is odd, then the element (tuv)k is in the
coset uΓ′, and if k is even, it is an element of Γ′. Finally, if l is odd, then
(t(uv)2)l ∈ tΓ′, and if l is even, then this element is in Γ′.

It follows that if a signifier of G has two or more odd components, then
G is a perfect group. This observation includes Theorem 1 as a special
case. Indeed the notion of signifier extends the idea behind Theorem 1 by
considering the additional element t(uv)2.

If G/G′ ∼= Z2, then a signifier of G must have at most one odd component.
If G/G′ ∼= Z2 and a signifier has one odd component, then K ⊆ 〈x〉Γ′, where
x is u, tu or t respectively depending on whether the odd component is the
first, second or third component.

Now suppose G/G′ ∼= H/H ′ ∼= Z2 and the signifiers of both G and H have
one odd component. If the same component is odd, then [G × H : L] ≥ 2.
If a different component is odd, then the quotient group G/τG(ψ) is perfect.
One way to decide what happens is to take the dot product of the signifiers
modulo 2. If the result is one, then [G×H : L] ≥ 2, and if the result is zero,
then G/τG(ψ) is perfect.

Suppose that, further, for any normal subgroups N of G and M of H such
that G/N ∼= H/M , then G/N is abelian. In this case, if the dot product of
the signifiers modulo 2 is one, then [G×H : L] = 2, and if the result is zero,
then L = G×H.

To illustrate the use of the signifier in applying Theorem 4, let G = S4.
Then a simple calculation shows that G has two possible signifiers, (3, 4, 4)
and (4, 3, 4). Let H = PGL(2, 7). Then H has three possible signifiers,
(8, 7, 6), (7, 8, 6) and (8, 8, 7). The only non-trivial isomorphic quotient that
these two groups have is Z2. Constructing the subdirect product of S4 and
PGL(2, 7) with signifiers (3, 4, 4) and (8, 7, 6), respectively, yields the direct
product S4 × PGL(2, 7). Thus, S4 × PGL(2, 7) is an M*-group with action
index 24; this group also has action indices 8 and 21 (obtained with other
choices of the signifiers). On the other hand, a subdirect product of S4 and
PGL(2, 7) with signifiers (4, 3, 4) and (8, 7, 6), respectively, has index two in
S4 × PGL(2, 7). All this can also be verified by direct computation.
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Now we consider the cases in which the abelian quotients of G and H
are not both of order 2 or less. It is easy to see that the subdirect product
will not equal the direct product in these cases. The following theorem gives
some results about these cases.

Theorem 5. Let G and H be M*-groups with |G/G′| ≥ 2 and |H/H ′| = 4.
Let θ : Γ → G and φ : Γ → H be the epimorphisms of Γ onto G and H,
respectively, and construct the subdirect product L = Im(ψ). Then [G×H :
L] ≥ 2. If |G/G′| = |H/H ′| = 4 then [G×H : L] ≥ 4.

Furthermore, suppose that for any normal subgroups N of G and M of
H such that G/N ∼= H/M , the quotient group G/N is abelian. If |G/G′| = 2
and |H/H ′| = 4 then [G × H : L] = 2. If |G/G′| = |H/H ′| = 4 then
[G×H : L] = 4.

Proof. If |G/G′| = 4, then ker(θ) ⊆ Γ′ and if |H/H ′| = 4, then ker(φ) ⊆ Γ′.
If |G/G′| = 2, then ker(θ) ⊆ 〈x〉Γ′ for x ∈ {t, u, tu}. Then [G ×H : L] ≥ 2
by equation (2). If |G/G′| = 4 and |H/H ′| = 4, then [G × H : L] = [Γ :
(ker(θ) · ker(φ))] ≥ [Γ : Γ′] = 4.

Finally, suppose that for any normal subgroups N of G and M of H, if
G/N ∼= H/M , then G/N is abelian. Since G/τG(ψ) ∼= H/τH(ψ) by Corollary
3, it follows that G′ ⊆ τG(ψ) ⊆ G and a similar equation for H. The result
follows.

For example, let G = PGL(2, 7) and let H be a solvable M*-group with
|H/H ′| = 4. Numerous choices are possible for H; for any choice, though,
any genus action of H is on an orientable surface, by Proposition 2. Then
the construction yields an M*-group of order 168 · |H|, with the M*-group
acting on an orientable surface.

There is a characterization of the M*-groups that are subdirect products
of two smaller M*-groups.

Theorem 6. The M*-group L is a subdirect product of two smaller M*-
groups if and only if L has normal subgroups J1 and J2 such that [L : J1] > 6,
[L : J2] > 6 and J1 ∩ J2 = 1.

Proof. First suppose the M*-group L has normal subgroups J1 and J2 such
that [L : J1] > 6, [L : J2] > 6 and J1∩J2 = 1. Then G = L/J1 and H = L/J2

are M*-groups. Let α : L → G and β : L → H be the canonical quotient
mappings. Then the mapping γ : L→ G×H defined by γ(x) = (α(x), β(x))
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is an isomorphism of L onto a subdirect product of G and H (γ is injective
since J1 ∩ J2 = 1).

Now suppose that L, G and H are M*-groups, with |L| > |G| and
|L| > |H|, such that L is a subdirect product of G and H. Then L is a
subgroup of the direct product G×H such that pG(L) = G and pH(L) = H.
Let δG and δH denote the restrictions of pG and pH , respectively, to the group
L. Then let J1 = ker(δG) and J2 = ker(δH). Then J1 is normal in L and,
since L/J1 is isomorphic to the M*-group G, [L : J1] > 6. In the same way,
J2 is normal in L and [L : J2] > 6. It is clear that J1 ∩ J2 = 1, since J1 and
J2 are subgroups of G×H.

A special case of Theorem 6 is worth mentioning, since it is easy to check,
with the software MAGMA, for example. The Fitting subgroup Fit(G) of a
group G is the maximal normal nilpotent subgroup of G.

Corollary 6. Let L be an M*-group with |L| > 12 and Fitting subgroup
F = Fit(L). If |F | is divisible by two distinct primes, then L is a subdirect
product of two smaller M*-groups.

Proof. Suppose that p and q are distinct primes, each of which divides |F |.
Let P and Q be the Sylow p-subgroup of F and the Sylow q-subgroup of F ,
respectively. Then P and Q are characteristic subgroups of F and L, and
P ∩Q = 1.

If |F | is divisible by a third prime (not p or q), then obviously [L : P ] > 6
and [L : Q] > 6. Also, if [L : F ] ≥ 4, then, again, easily, [L : P ] > 6 and
[L : Q] > 6.

Suppose that |F | is divisible by exactly two primes and [L : F ] < 4.
Then an M*-group cannot have a quotient of order 3, and an M*-group is
not nilpotent, since its Sylow 2-subgroup is not normal. Hence, we must have
[L : F ] = 2, with p = 2 and q = 3. Write |L| = 2i · 3j for some i and j. Now
|Q| = 3j and L/Q is a quotient of the M*-group L. Thus i must be 2. Now
L = 4 · 3j and |P | = 2. Since L/P is a quotient of L, the only possibility is
j = 1. Now L ∼= D6, the M*-group of order 12. With |L| > 12, then, this
case cannot occur.

Now by the theorem L is a subdirect product of L/P and L/Q.

For example, L = S3 × S4, the M*-group of order 144 [11, p. 7], has
Fitting subgroup F ∼= Z3× (Z2)

2. The group L is a subdirect product of the
smaller M*-groups S3 × S3 and Z2 × S4.
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5 Direct Products of M*-groups.

Now we consider necessary and sufficient conditions for an M*-group to be
the direct product of two smaller M*-groups. First, there is an easy, algebraic
necessary condition.

Proposition 10. Let M = G×H be the direct product of G and H, where
|G| > 6 and |H| > 6. If M is an M*-group, then G and H are M*-groups
such that one of the following holds:
1) At least one of the groups G, H is perfect, or
2) [G : G′] = [H : H ′] = 2.

Proof. It is basic that a quotient of an M*-group by a normal subgroup of
index larger than 6 is again an M*-group [8, Th. 6]. Thus G and H are
M*-groups. We know that M ′ = G′×H ′. If neither G nor H is perfect, then
condition (2) clearly must hold.

There is also a necessary condition involving the actions of the factors of
the direct product.

Theorem 7. Let M = G × H be the direct product of G and H, where
|G| > 6 and |H| > 6. Suppose M is an M*-group acting on W with index
s. Write X = W/H and Y = W/G. Let q be the index of the action of the
M*-group G = M/H on X and r the index of the action of the M*-group
H = M/G on Y . Then
1) s = lcm(q, r) and
2) At least one of the surfaces X, Y is non-orientable.

Proof. Let the M*-group M = G × H have the partial presentation (1)
with generators T , U and V . Then we may write T = (t, a), U = (u, b)
and V = (v, c), of course. What is important here is that the elements t, u
and v generate the M*-group G in the natural presentation of the quotient
group G = M/H acting on X. In particular, the action index q = o(uv).
Further, a, b and c generate the M*-group H = M/G acting on Y with index
r = o(bc). Now, clearly, s = lcm(q, r).

To prove 2), suppose to the contrary that both X and Y are orientable.
Then we must have [G : G+] = 2 and [H : H+] = 2 so that [M : G+×H+] =
4. However, M+ = 〈TU,UV 〉 is always a subgroup ofG+×H+, and [M : M+]
is at most 2. Hence, X and Y cannot both be orientable.
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Thus, if the M*-group M is the direct product of two M*-groups G and
H, either G or H must act on a non-orientable surface. We assume that it
is H and then consider the orientability of the surface on which M acts.

Theorem 8. Suppose the M*-group M is the direct product of the M*-groups
G and H. Let M act on the bordered surface W . Write X = W/H and
Y = W/G, and assume that the surface Y is non-orientable. Then the
following hold.
1) If X is orientable, then W is orientable.
2) Assume that X is non-orientable. If [G : G′] = [H : H ′] = 2, then W is
orientable; otherwise, W is non-orientable.

Proof. First, 1) holds by Proposition 9.
Assume, then, that the surface X is non-orientable. If [G : G′] = [H :

H ′] = 2, then M ′ = G′ × H ′ and [M : M ′] = 4. Now W is orientable, by
Proposition 2. If both M*-groups G and H are perfect, then M is also perfect
and the surface W on which M acts is non-orientable. Assume, finally, that
one of the M*-groups, say H, is perfect, while in the other, [G : G′] = 2.
Suppose to the contrary that W is orientable. Then [M : M+] = 2. But
M ′ = G′×H ′ = G′×H clearly has index 2 in M . Hence M ′ = M+, and now
1×H ⊂M+. Since pG(M+) = G+ always, here we would have [G : G+] = 2
and the surface X would be orientable, contradicting our assumption. Hence
W must be non-orientable.

Next we consider sufficient conditions for the direct product of two M*-
groups G and H to be an M*-group. First we consider the greatest common
divisor of the action indices.

Theorem 9. Let H be an M*-group acting on a non-orientable surface with
index r. Let G be another M*-group with action index q. If the action indices
q and r are relatively prime, then the direct product G ×H is an M*-group
with action index qr.

Proof. We continue to use the notation of Proposition 9. Since H acts on a
non-orientable surface, H = H+ = 〈ab, bc〉. By Theorem 3, H+ ⊆ τH(ψ) and
therefore, by Theorem 2, the subdirect product L is the direct product.

If the M*-group H is perfect, then the only surfaces on which H acts are
non-orientable. In this case Theorems 3 and 8 yield the following.
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Corollary 7. Let H be a perfect M*-group with action index r. Let G be
another M*-group acting on X with index q. If gcd(q, r) ≤ 4, then the direct
product M = G × H is an M*-group with action index lcm(q, r). Further,
the surface W on which M acts is orientable if and only if X is orientable.

Proof. Let d = gcd(q, r). If 2 ≤ d ≤ 4, then H/τH(ψ) is isomorphic to a
quotient of the abstract group [3, d], by Theorem 3. But in each case the
group [3, d] is solvable, and the perfect group H has no non-trivial solvable
quotients. Hence the subdirect product L is the direct product. If q and r
are relatively prime, this follows immediately from Theorem 9, but it is also
a consequence of Theorem 3. In any case, the orientability of W is given by
Theorem 8.

For example, let H = PSL(2, 23), the simple group of order 6072. Then
H is an M*-group [19] with action indices 11 and 12; the indices can be found
using MAGMA. The M*-group G = PGL(2, 7) has action indices 7 and 8.
Thus G×H is an M*-group, with action indices 24, 77, 84 and 88.

Corollary 8. Let H be a perfect M*-group. If H has two action indices q
and r such that gcd(q, r) ≤ 4, then the direct product M = H × H is an
M*-group with action index lcm(q, r). Further, the surface W on which M
acts is non-orientable.

Among the small projective special linear groups [19], we can take H =
PSL(2, 8) ∼= G3,7,9 [6, p. 140], which has action indices 7 and 9. Hence
H ×H is an M*-group that acts on a non-orientable surface with index 63.
Another possible choice is H = PSL(2, 13) ∼= G3,7,13 [6, p. 140].

In case [G : G′] = [H : H ′] = 2, Theorems 8 and 9 yield the following.

Corollary 9. Let H be an M*-group with [H : H ′] = 2 acting on the non-
orientable surface Y with index r. Let G be another M*-group with [G : G′] =
2 acting on X with index q. If the action indices q and r are relatively prime,
then the direct product M = G × H is an M*-group with action index qr.
Further, the surface W on which M acts is orientable.

In particular Corollary 9 can be applied to any M*-group H with [H :
H ′] = 2 that has two relatively prime action indices, as long as one of the
actions is on a non-orientable surface. For example, S4×S4 and PGL(2, 7)×
PGL(2, 7) are M*-groups.

The next sufficient condition is more general and depends on the con-
struction of §3; see Corollary 5.
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Theorem 10. Let H be an M*-group that acts on a non-orientable surface
with index r. Let G be another M*-group with action index q. If no non-
trivial quotient of G is isomorphic to a quotient of H, then the direct product
G×H is an M*-group with action index lcm(q, r).

We note two interesting special cases. The first, in particular, provides a
wealth of examples of relatively small order.

Corollary 10. Let G be a solvable M*-group with action index q, and let H
be a perfect M*-group with action index r. Then G×H is an M*-group with
action index lcm(q, r).

For example, let H = A5, the smallest simple M*-group. The group A5

has the unique action index r = 5 [13, Lemma 3]. The M*-group G = S4

acts on a sphere with 4 holes with index 3 and a real projective plane with
3 holes with index 4. Thus we see that S4 ×A5 is an M*-group. This group
acts on an orientable bordered surface with index 15 and a non-orientable
one with index 20. Of course, many similar examples are possible.

Corollary 11. Let G and H be non-isomorphic simple M*-groups with action
indices q and r, respectively. Then G×H is an M*-group with action index
lcm(q, r).

For some final examples, we use PSL(2, 19), which is an M*-group [19]
with action indices 9 and 10. Then A5 × PSL(2, 19) is an M*-group with
action indices 10 and 45. Also PSL(2, 19)×PSL(2, 23) is an M*-group with
action indices 36, 60, 99 and 110.

6 Other Applications.

In connection with group actions on surfaces of a fixed genus, there are many
instances in which the groups of maximum possible order have a particular
partial presentation. In this case the construction of §3 can be applied. There
are, in fact, numerous possibilities. The surfaces could be Klein surfaces, with
or without boundary, as well as Riemann surfaces. In some instances, the
group actions could be restricted to actions that preserve orientation.

Best known, perhaps, are the classical Hurwitz groups that act on Rie-
mann surfaces. Each Hurwitz group acts a group of 84(g − 1) automor-
phisms on a Riemann surface of genus g ≥ 2 and has a partial presentation
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x2 = y3 = (xy)7. See the survey article [4] for a nice discussion of these
groups. Indeed, it is pointed out in [4, §4] that the subdirect product can be
used to construct larger Hurwitz groups.

Another possibility would be to consider consider 2-groups acting on bor-
dered Klein surfaces; here see the recent article [15]. A third possibilty would
be to consider groups of odd order acting on Riemann surfaces; these groups
were considered in [16]. These are instances where the subdirect product
construction of §3 can be applied to construct a larger group of the same
type, at least. However, we do not claim here that the construction will nec-
essarily lead to interesting general results. We conclude with some examples
with groups of odd order.

In [21], Zomorrodian gave a p-group analog of the Hurwitz Theorem. He
showed, among other things, that the largest 3-group acting on a Riemann
surface of a certain genus was an image of the Fuchsian group Γ(3, 3, 9).
It is easy to see that there are two images of Γ(3, 3, 9) of order 81. These
are groups 7 and 9 in the Magma Library of Small Groups; we use the
notation SG(n, k) to refer to group k of order n in this MAGMA library. If
G = SG(81, 7) and H = SG(81, 9), then [G : τG(ψ)] = [H : τH(ψ)] = 27.
It follows that the subdirect product of G and H has index 27 in the direct
product and so is of order 243. It is isomorphic to SG(243, 3) and is a
Γ(3, 3, 9) group. Similarly, if G = SG(81, 7) and H = SG(243, 26), both
Γ(3, 3, 9) groups, then [G : τG(ψ)] = [H : τH(ψ)] = 27. It follows that the
subdirect product of G and H has index 27 in the direct product and so is
of order 729. It is isomorphic to SG(729, 40) and is a Γ(3, 3, 9) group. This
procedure is not too difficult and can be done with very large groups.

A final example is with Γ(3, 3, 9) groups that are not 3-groups. Let
G = 〈x, y|x3 = y3 = (xy)9 = [x, y]21 = (x ∗ y ∗ x)21 = [[x, y], [x, y]x] =
[[x, y], [x, y]y] = 1.〉. This is clearly a Γ(3, 3, 9) group and its order is 3969.
Let H = 〈x, y|x3 = y3 = (xy)9 = [x, y]39 = (x ∗ y ∗ x)39 = [[x, y], [x, y]x] =
[[x, y], [x, y]y] = 1.〉. This is clearly a Γ(3, 3, 9) group and its order is 13689.
Finally, [G : τG(T )] = [H : τH(S)] = 81 and so the subdirect product is a
Γ(3, 3, 9) group and its order is 670761.
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