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MINIMAL EXTENSION COVERS

Jay Zimmerman
Department of Mathematics, Towson University, Baltimore, Maryland, USA

Let A and B be finite groups and let S be the set of all extensions of A by B. A group
G is called an extension cover of �A�B�, if G contains all extensions in S as subgroups
of G. A group G is called a minimal extension cover if G is an extension cover of
minimal order. Let n = p

e1
1 · · ·pek

k be the prime factorization of the odd number n

and define ni = p
ei
i . The group Dn1

× · · · ×Dnk
× Z2 is the unique minimal extension

cover of �Zn� Z2�. This article also constructs a minimal extension cover of �Z2n � Z2�.
Some conjectures about minimal extension covers are examined as well.
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1. INTRODUCTION

Given finite groups A and B, let �Gi � 1 ≤ i ≤ n� be the set of all groups, up
to isomorphism, such that A is a normal subgroup of Gi and B � Gi/A. The set
�Gi� is the set of all extensions of A by B. A group G is called an extension cover
of �A� B� if G contains each group of �Gi� as a subgroup. Clearly, extension covers
exist. The direct product G1 × · · · ×Gn is an extension cover of �A� B�. It is also true
that A � B, the wreath product of A by B, is an extension cover of �A� B�. Finally,
any group which contains an extension cover is also an extension cover.

It follows that the set of all extension covers forms a partially ordered set
under inclusion. It is easy to show that there are many minimal elements under this
ordering. The set of all extension covers may also be ordered by the order of the
group. We will define a minimal extension cover of �A� B� as an extension cover with
minimal order. Even under this definition, minimal extension covers are not unique,
in general. However, the order of a minimal extension cover is unique. It is easy to
find both upper and lower bounds for this order. However, it is much harder to find
“good” upper and lower bounds for the order of a minimal extension cover.

There are also some obvious modifications of the idea of an extension cover.
A group G is called a central extension cover of �A� B� if G contains each central
extension of A by B as a subgroup. Given any groups �A� B�, the direct product
with amalgamation G1 ×A · · · ×A Gn of all central extensions of A by B is a central
extension cover of �A� B�.
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2. NOTATION

For n ≥ 3, let Dn be the group with generators X, Y and defining relations

Xn = Y 2 = �YX�2 = 1� (1)

The group Dn is the dihedral group of order 2n.
The nonabelian 2-groups that possess a maximal cyclic subgroup of index

2 are well-known groups. There are four families of 2-groups with this property,
[3, §5.4]. These families can be constructed using the nontrivial automorphisms of a
cyclic 2-group. For n ≥ 3, the automorphism group is given by

Aut�Z2n � = �−1� × �5� � Z2 × Z2n−2 � (2)

These power automorphisms are detailed in [8, p. 130]; also see [3, §§2.5, 5.4]. Next
we describe these four families of 2-groups.

The first family is the family of dihedral groups where n is a power of 2. In
order to make the notation consistent across the four families, we will define D�m�
to be the dihedral group of order 2m. Therefore, D�m� = D2m−1 .

For m ≥ 3, let DC�m� be the group with generators X, Y and defining relations

X2m−1 = 1� X2m−2 = Y 2� Y−1XY = X−1� (3)

The group DC�m� is called the dicyclic group of order 2m or sometimes the
generalized quaternion group [3, p. 29].

For m ≥ 4, let QD�m� be the group with generators X, Y and defining relations

X2m−1 = Y 2 = 1� YXY = X−1+2m−2
� (4)

The group QD�m� of order 2m is called a quasidihedral group (or semidihedral
group) [3, p. 191].

For m ≥ 4, let QA�m� be the group with generators X, Y and defining relations

X2m−1 = Y 2 = 1� Y−1XY = X1+2m−2
� (5)

The group QA�m� is a nonabelian group of order 2m [3, p. 190]; we call these groups
quasiabelian [6, p. 237].

Each group in these four families has a maximal cyclic subgroup, and, in fact,
these four families of groups are characterized among all nonabelian 2-groups by
this property [3, Th. 4.4, p. 193]. The three automorphisms of order 2 of the maximal
cyclic group will be called inversion, the quasidihedral action, and the quasiabelian
action. Inversion is also used to construct a dicyclic group, but the element of the
group that gives rise to the inner automorphism which is inversion has order 4.

3. QUESTIONS

There are a great many questions associated with the idea of minimal
extension covers. We will show in the next section that minimal extension covers
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are sometimes unique and sometimes not unique. Another question of interest is
whether a minimal extension cover contains the completion of an amalgam of the
groups involved.

An amalgam of two groups is a diagram G ←− K −→ H , where the arrows
are embeddings. We may think of G and H as groups which intersect in a common
subgroup, K. Thus any two extensions G and H of A by B contain a copy of A
as a normal subgroup and are an amalgam of these groups. A completion of this
amalgam is a group M which contains isomorphic copies of the groups G and H
which intersect in a subgroup isomorphic to A. This common subgroup, A, must be
embedded in G and H in the same way as the embeddings in the amalgam. We say
that M contains the amalgam. This idea may be extended to more than just two
groups with a common subgroup. Completions of amalgams of two finite groups
always exist.

We may ask the following questions about minimal extension covers. If a
completion of the amalgam of all of the extensions of A by B exists, must the
smallest such completion be a minimal extension cover of A by B? The definition of
a minimal extension cover says nothing about how the extensions are situated in the
group, so this seems unlikely. Does a minimal extension cover need to contain any
amalgam of the extensions?

It seems clear that the next step is to generate some examples of minimal
extension covers. In the cases where A or B or both are members of some family
of groups, it seems reasonable that at least one of the minimal extension covers
will also occur as a member of a family of groups. The rest of this article will
be concerned with constructing minimal extension covers for families of very
elementary groups and proving that these extension covers are minimal.

4. ELEMENTARY EXAMPLES

We give a number of examples of extension covers. Suppose that A and B
are both nonabelian finite simple groups. By the Schrier conjecture (which has been
verified using the classification of finite simple groups), Out�S� is a solvable group.
Therefore, if A and B are nonisomorphic, then B acts trivially on A. In all such
cases, the only extension of A by B is the direct product. So the minimal extension
cover of A by B is the direct product.

Next we look at minimal extension covers of �Zn� Z2� where n is odd. If G
is an extension of Zn by Z2, then G is a semidirect product. Now since Aut�Zp� �
Z�p−1�pn−2 , it follows that Z2 acts on Zpn either trivially or by inversion. The Primary
Decomposition Theorem says that Zn is isomorphic to the direct product of its
p-primary factors and those factors are characteristic. Therefore, any automorphism
of Zn of order 2 acts either trivially or by inversion on the p-primary factors. So
if there are k p-primary factors, then there are 2k possible automorphisms of Zn.
Each one of these automorphisms corresponds to a non-isomorphic extension and
vice versa. Therefore, there are 2k extensions of order 2n. Each of these extensions
is isomorphic to the direct product of a dihedral group and a cyclic group, Du × Zv,
where u and v are relatively prime and n = uv.

Now let n = p
e1
1 · · ·pek

k be the prime factorization of n, and define ni = p
ei
i .

Let M�n� = Dn1
× · · · ×Dnk

× Z2. Suppose that each dihedral group is generated by
elements xi and yi of order 2 and ni, respectively, and z generates Z2. Given a group
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Du × Zv, where u and v are relatively prime, u 
= 1 and n = uv, let u = m1 · · ·ms

where the mi are a rearrangement of the ni. Therefore, v = ms+1 · · ·mk. Define the
elements x, y, and w by x = xm1

· · · xms
, y = ym1

· · · yms
, and w = yms+1

· · · ymk
. Clearly,

x has order 2, y has order u, and x operates on y by inversion. Therefore, �x� y� �
Du. Next, w has order v and commutes with both x and y. It follows that �x� y� w� �
Du × Zv. Finally, �z� y1 · · · yk� � Z2n and M�n� is an extension cover of �Zn� Z2�.

It remains to prove that M�n� is a minimal extension cover of �Zn� Z2�. Since
a computer search of all groups of order 30 up to and including order 120 shows
that M�15� = D3 ×D5 × Z2 is the unique minimal extension cover of �Z15� Z2�, it is
clear that M�n� is a good candidate for the minimal extension cover.

The remainder of this section will be devoted to proving that M�n� is the
unique minimal extension cover of �Zn� Z2�.

Lemma 1. Let G be a minimal extension cover of �Zn� Z2�, where n is odd. Let n =
pe ×m where p does not divide m. Suppose that a Sylow p-subgroup S of G has order
pe, then S is cyclic and normal in G. In addition, all elements of G act on S either
trivially or as the inversion automorphism.

Proof. Let G be a minimal extension cover of �Zn� Z2�. Let S be any Sylow
p-subgroup of G with p odd, and suppose that �S� = pe is the highest power of p
dividing n. Let H = Du × Zv = Zuv ×� Z2 be any extension of Zn by Z2. Suppose Zuv

is generated by the element x. Define m = n/�pe�. Now xm has order pe, and so it is
contained in some Sylow p-subgroup T of G. There exists an element z of G such
that Tz = S. Now Hz is a subgroup which is isomorphic to H and whose Sylow
p-subgroup is S. It follows that Hz normalizes S. Therefore, every extension of Zn

by Z2 is isomorphic to a subgroup of NG�S�. Since G is a minimal extension cover,
it must equal NG�S�. Therefore, S is normal in G, and it is clearly cyclic.

Now define the reversing symmetry group of an element a ∈ G, EG�a� = �x ∈
G�x−1ax = a−1�

⋃
CG�a�. The reversing symmetry group is a group [2]. Let H be

any extension of Zn by Z2, and let S = �a�. So H ≤ EG�a� for all extensions H and
EG�a� is an extension cover. Since G is a minimal extension cover, it follows that
G = EG�a�.

Theorem 1. Let n = p
e1
1 · · ·pek

k be the prime factorization of the odd number n
and define ni = p

ei
i . The group M�n� = Dn1

× · · · ×Dnk
× Z2 is the unique minimal

extension cover of �Zn� Z2�.

Proof. We have already shown that M�n� is an extension cover of �Zn� Z2�. The
proof that it is minimal is by induction on k, the number of odd primes dividing the
integer n. First, suppose that k = 1. There are two extensions of �Zpe� Z2�, namely,
Dpe and Z2pe . It is obvious that Dpe × Z2 is the minimal extension cover.

Now suppose that the minimal extension cover of �Zm� Z2� is M�m� = Dn1
×

· · · ×Dnl
× Z2, where l is the number of primes in m and l < k. Let G be a minimal

extension cover of �Zn� Z2�, where k is the number of primes dividing n. So �G� ≤
�M�n�� = n · 2k+1. Let Spi be the Sylow pi subgroup of G for i = 1� � � � � k. Clearly,
Zp

ei
i
≤ Spi . Assume that p

ei
i < �Spi � for all i. Therefore, n · p1 · · ·pk · �S2� ≤ n · 2k+1,

where S2 is a Sylow 2-subgroup of G. Since 2 ≤ �S2�, we see that p1 · · ·pk ≤ 2k, and
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this gives a contradiction. Therefore, there is some Sylow p-subgroup, S, whose
order is the largest power of p dividing n. It follows from Lemma 1 that S is a cyclic
normal Sylow p-subgroup of G and that every element of G acts either trivially or
as the inversion automorphism on S.

Clearly, there are elements of G that do not centralize S. Therefore, CG�S� is
a proper subgroup of G, and it follows that �CG�S�� ≤ �G�/2 ≤ n · 2k. Let T be any
Sylow q-subgroup of G. Now by Lemma 1, T acts trivially on S, as does S itself.
Therefore, CG�S� contains all Sylow subgroups for any odd prime. Let �S� = pe, and
define m = n/�pe�. It follows that m has k− 1 primes dividing it. We will show that
CG�S�/S is a minimal extension cover of �Zm� Z2� and use the induction hypothesis.

Let H be any extension of Zm by Z2. So H = Du × Zv, where m = uv and
u and v are relatively prime. Define K = Du × Zvpe , an extension of Zn by Z2.
Now K ≤ CG�S� and, therefore, H ≤ CG�S�/S. So CG�S�/S is an extension cover of
�Zm� Z2�. It follows that �CG�S�/S� ≤ m · 2k and so CG�S�/S is a minimal extension
cover of �Zm� Z2�. By the induction hypothesis, CG�S�/S � Dn1

× · · · ×Dnk−1
× Z2.

In particular, all odd Sylow p-subgroups of CG�S�/S are cyclic and normal. It is
easy to show that this implies that all odd Sylow p-subgroups of G are cyclic and
normal. This also shows that the Sylow 2-subgroup of CG�S� is elementary abelian.
Therefore, we can conclude that G is the semidirect product of N � Zn by a Sylow
2-subgroup, S2.

By the same argument as used in Lemma 1, each extension has an isomorphic
copy with Z2 part contained in a fixed Sylow 2-subgroup S2. The normal subgroup
N is isomorphic to Zp

e1
1
× · · · × Zp

ek
k
, and let bi generate each pi-primary factor of

N . Let xi be the element of order 2 which acts as inversion on the pi factor and acts
trivially on the other factors. Therefore, �bi� xi� � Dp

ei
i
. Finally, let y be the element

of order 2 in S2 which acts trivially on N . By minimality, S2 = �x1� � � � � xk� y�, and
it has order 2k+1. Next, we show that S2 is elementary abelian.

Suppose that k = 2. Since �x1� y� ≤ CG�Sp2� and �x2� y� ≤ CG�Sp1�, the
induction assumption shows that y is in the center of S2. If x1 and x2 do not
commute, then x1 · x2 has order a power of two that is 4 or larger. In addition, x1 · x2
acts on N by inverting all elements. However, since S2 has order 8, it is easy to see
that the extension Dn × Z2 is not contained in G. This contradiction shows that x1
and x2 commute and S2 is elementary abelian.

In the case k > 2, each pair of elements xi and xj is contained in some
centralizer CG�Spl�, and the induction assumption shows that they commute. Since
y is contained in each centralizer, it commutes with everything. Therefore, S2 is
elementary abelian. Finally, G = �b1� x1� × · · · × �bk� xk� × �y� � M�n� and G has
the proper form. Therefore, the theorem is true by induction.

5. ELEMENTARY EXAMPLES WHICH ARE 2-GROUPS

Next we look at minimal extension covers of �Zn� Z2� where n is a power of
2. It is clear that a minimal extension cover of �Z2� Z2� is �Z2 × Z4�. It is also easy
to see that D4, which is isomorphic to the wreath product Z2 � Z2, is a minimal
extension cover of �Z2� Z2�. Let G be the group defined by

G = �x� y� z � x8 = y4 = x−4y2 = y−1xyx = z−2y2 = �x� z	 = �y� z	 = 1�� (6)
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The group G is the direct product of the dicyclic group of order 16 and the
cyclic group of order 4 with amalgamated subgroup of order 2. The extensions of
Z4 by Z2 are the quaternions, Q, the dihedral group, D4, and the abelian groups, Z8

and Z2 × Z4. Clearly, Q = �x2� y� and Z8 = �x�. It is easy to see that D4 = �x2� yz�
and Z2 × Z4 = �y� yz�. Therefore, G is an extension cover of �Z4� Z2�, and it has
order 32.

Suppose that H is an extension cover of �Z4� Z2� with order 16. Therefore, Z8

has index 2 in H , and hence it is normal. It follows that H is either an abelian,
dihedral, dicyclic, quasidihedral, or a quasiabelian group. It is clear that H is not
abelian, dihedral or quasiabelian, since none of them contains Q. The other two do
not contain copies of Z2 × Z4. Therefore, G is a minimal extension cover of �Z4� Z2�.

However, this minimal extension cover is not unique. Using the computer
algebra system, Magma, it is easy to show that the groups of order 32 with numbers
11, 38, 40, 42, 43, and 44 contain subgroups isomorphic to each of the groups
Q, D4, Z8, and Z2 × Z4. These are the only minimal extension covers of �Z4� Z2�.
The group G constructed above is group number 42. In at least two of these 6
groups, there are normal subgroups isomorphic to each of Q, D4, Z8, and Z2 × Z4.
It is also the case that in at least one of them, not all of the groups are normal
subgroups. Finally, in the group G(32,11), none of the groups isomorphic to Q
intersect any group isomorphic to Z8 in a subgroup of order 4. This shows that a
minimal extension cover need not contain an amalgam of the extensions of A by B
over the subgroup A.

In the general case of �Z2k � Z2� for k ≥ 3, the extensions of Z2k by Z2 are
two abelian groups, Z2k × Z2 and Z2k+1 , the dihedral group, D�k+ 1�, the dicyclic
group, DC�k+ 1�, the quasidihedral group, QD�k+ 1�, and the quasiabelian group,
QA�k+ 1�. It is not obvious what group is the minimal extension cover in this case.
Therefore, we will examine the smallest case, k = 3. The extensions of Z8 by Z2

are abelian, Z16 or Z8 × Z2, dihedral, D�4�, dicyclic, DC�4�, quasidihedral, QD�4�,
or quasiabelian, QA�4�. Using Magma, it is easy to show that there is a unique
group of order 64 that contains subgroups isomorphic to each of these groups. The
minimal extension cover of �Z8� Z2� is G = SmallGroup�64� 40�. While this group
contains all six extensions of Z8 by Z2, no more than three of them intersect in a
copy of Z8. The groups Z8 × Z2, D�4� and DC�4� intersect in Z8, and this group is
normal in G. This amalgam generates a subgroup of G of order 32. The groups Z8 ×
Z2, Z16, and QD�4�, intersect in Z8, and this group is normal in G. This amalgam
generates all of G. There are no other amalgams of two or more of these groups
in G.

6. MINIMAL EXTENSION COVERS OF �Z2n−1� Z2)

In this section, we will find an extension cover of �Z2n−1� Z2� for n ≥ 4. Let
S�n� be the set of relators S�n� = �u2n � v2

n
� �u� v	� u2v−2�. Then the group A�n� =

�u� v � S�n�� is an abelian group isomorphic to �Z2n × Z2�. Define the group G�n� by
the presentation

�u� v� x� y � S�n�� y2� �u� y	� y−1vyv−�1+2n−1�� x2� �x� y	� x−1uxu� x−1vxv�� (7)
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Clearly, A�n� is normal in G�n�, and x operates on it by inversion. So H�n� =
�u� v� x� has order 2n+2 and it is normal in G�n�. Now conjugation by y fixes u and x
and takes v into v1+2n−1

. It is easy to verify that this is an automorphism of H�n� of
order 2, and so G�n� is the semidirect product H�n�×
 �y� of order 2n+3.

It is obvious that �u� � �v� � Z2n and that �u2� y� � Z2n−1 × Z2. Also �u2� x� �
D�n�. Next, �uv�2 = u4, and so �uv� = 2n−1 and �y� = 2. Also y�uv�y = uv1+2n−1 =
�uv�1+2n−2

. It follows that �uv� y� � QA�n�. Similarly, �xy��uv��xy� = xuv1+2n−1
x =

u−1v−1+2n−1 = �uv�−1+2n−2
, and it follows that �uv� xy� � QD�n�. Finally, �v2� xyv� �

DC�n�. Hence G�n� is an �Z2n−1� Z2� extension cover. By the previous section, the
n = 4 case is NOT a minimal extension cover. In the n = 5 case, using Magma, it
is possible to show that there is no �Z16� Z2� extension cover of order 128, and so
G�n� is a minimal extension cover.

Theorem 2. The group G�n� defined by presentation (7) is a minimal extension cover
of �Z2n−1� Z2� for n ≥ 5. In general, it is not unique.

Proof. Now we prove that G�n� is a minimal extension cover of �Z2n−1� Z2� for all
n ≥ 5. Suppose that T�n� is a �Z2n−1� Z2� extension cover with �T�n�� < 2n+3. Since 2n

divides �T�n��, it follows that �T�n�� = m · 2n with 1 < m < 8. Since each �Z2n−1� Z2�
extension is a 2-group, it is contained in a Sylow 2-subgroup of T�n�. Since all Sylow
2-subgroups are conjugate, we may replace T�n� by its Sylow 2-subgroup. Therefore,
we may assume that m = 2 or m = 4.

Suppose that m = 2. We have that Z2n is a normal subgroup of T�n�, and
this implies that T�n� is isomorphic to one of the groups Z2n+1 , Z2n × Z2, D�n+ 1�,
DC�n+ 1�, QD�n+ 1�, or QA�n+ 1�. None of these groups contains a subgroup
isomorphic to QA�n�, and so we can eliminate this possibility.

Finally, suppose that m = 4. It follows that T�n� contains a cyclic group of
index 4. Clearly, T�n� could contain a cyclic subgroup of index 2, in which case,
it would be abelian, dihedral, dicyclic, quasidihedral, or quasiabelian. However, it is
easy to show that none of these groups is an extension cover of �Z2n−1� Z2�.

Therefore, we consider the families of 2-groups that have cyclic subgroups of
index 4 but no cyclic subgroup of index 2. The classification of these groups is over
a century old, accomplished by Burnside [1] and Miller [4, 5]. There are two abelian
groups and 25 nonabelian groups of this type, as long as the order of the groups is
64 or larger. The fourteen groups studied by Burnside [1] all contain a cyclic normal
subgroup of index 4 in the group. These groups are denoted by B1 to B14. In the
eleven groups studied by Miller [4, 5], the cyclic group of index 4 is not normal.
These groups are isomorphic to one of the groups in Table 1.

Suppose that the cyclic group has order 2n and, therefore, the 25 non-abelian
groups G = T�n� have order 2n+2. Each of these groups contains a subgroup of
index 2 isomorphic to either Z2 × Z2n or the quasiabelian group QA(n+1). This is
true regardless of whether the cyclic group of index 4 is normal or not. Denote this
subgroup by N .

Suppose first that N is abelian. Then we must have N � Z2 × Z2n , and the
group G has a partial presentation

G = �x� y� z � x2n = y2 = �x� y	 = 1� � � � �� (8)
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Table 1 Nonabelian groups with cyclic subgroup of index 4

Family Presentation z−1xz = z−1yz = z2 =

B1 8 x yx2
n−1

1
B2 8 x−1 y y

B3 8 x1+2n−1
y y

B4 8 x−1+2n−1
y y

B5 10 x1+2n−2
y y

B6 10 x−1+2n−2
y y

B7 8 x−1 y x2
n−1

B8 8 x1+2n−1
y 1

B9 8 x−1+2n−1
y 1

B10 8 x−1 y 1
B11 8 x−1 yx2

n−1
1

B12 8 x−1 yx2
n−1

yx2
n−2

B13 10 x−1 y 1
B14 10 x−1+2n−1

yx2
n−1

1
M1 8 xy y 1
M2 8 xy y y

M3 8 x−1+2n−2
y yx2

n−1
1

M4 8 x1+2n−2
y yx2

n−1
1

M5 8 x−1+2n−1
y y x2

n−1

M6 8 x−1y y 1
Q1 10 xy y 1
Q2 10 x−1y yx2

n−1
1

Q3 10 x1+2n−2
y yx2

n−1
1

Q4 10 x1+2n−2
y y y

Q5 10 x−1+2n−2
y y 1

Q6 10 x−1+2n−2
y y x2

n−1

Ten of Burnside’s 14 groups are of this type. A complete presentation for G would
specify the action of a third element z, outside of N , on x and y.

In each of the remaining four of Burnside’s groups, the subgroup N of index
2 is quasi-abelian with presentation

x2
n = y2 = 1� y−1xy = x1+2n−1

� (9)

In this case, the group G has a partial presentation

G = �x� y� z � x2n = y2 = 1� y−1xy = x1+2n−1
� � � � �� (10)

Now assume that the nonabelian 2-group G has cyclic subgroups of index 4,
but that none of these is normal. Again, we assume that G does not have a cyclic
subgroup of index 2. Let H = �x� be one of the big cyclic subgroups. Then, if the
order is 64 or larger, there are exactly 11 nonisomorphic groups.

In this case, let N be the normalizer of H in G. Then N is of order 2n+1 and
H ⊂ N ⊂ G. Again, the two possibilities are that N is abelian or quasi-abelian. This
follows because the normalizer must contain two conjugates of H , and the dihedral,
quasidihedral, and dicyclic groups have a unique cyclic subgroup of index 2.
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Suppose first that N � Z2 × Z2n . Six of Miller’s groups are of this type [4].
We denote these groups Mi�n+ 2� for 1 ≤ i ≤ 6. Suppose finally that N = N�H� is
quasi-abelian with presentation (9). There are also six groups of this type [5], which
we denote Qi�n+ 2� for 1 ≤ i ≤ 6. The group M4 and the group Q3 are isomorphic,
which gives 11 nonisomorphic groups. Table 1 contains these 26 groups for n ≥ 4.
If n is 2 or 3, then there are some isomorphisms between groups, and fewer distinct
groups are defined.

The subgroup N has two cyclic subgroups of order 2n as well as two cyclic
subgroups of order 2n−1. Let A be either of the cyclic groups of order 2n−1 in N . It
is easy to check that N ≤ CG�A�. In the groups B2, B4, B6, B7, B9, B10, B11, B12, B13,
B14, M3, M5, M6, Q2, Q5, and Q6, these two cyclic subgroups of order 2n−1 in N are
the only subgroups of this order in the full group. The elements of the nontrivial
coset of N act by an automorphism on both subgroups of order 2n−1. Usually, but
not always, the automorphism is the same on both groups. Since the dihedral and
dicyclic groups both share the inversion automorphism, this means that there can
be at most three different nonabelian extensions of Z2n−1 by Z2. Therefore, these 16
groups are not extension covers of �Z2n−1� Z2�.

The remaining nine groups contain four distinct cyclic groups of order 2n−1.
We begin by giving the presentation for the group B1�n+ 2� of order 2n+2:

B1 = �x� y� z � x2n = y2 = z2 = �x� y	 = �x� z	 = 1� z−1yz = yx2
n−1�� (11)

By checking the orders of each element in this group, we can tell that this
group has four subgroups of order 2n−1. These groups are �x2�, �x2y�, �x2z�,
and �x2yz�. The subgroup N described above is �x� y�. Let us consider the case
of the subgroup �x2yz�. It is easy to compute that CG��x2yz�� = �x� yz� and
that NG��x2yz�� = G. So the element z has order 2 and conjugation by z is the
quasiabelian action on �x2yz�. It follows that the quasiabelian group QA�n� is an
extension of Z2n−1 by Z2 contained in G. The other three cyclic subgroups yield either
the quasiabelian group also or an abelian group. It follows that B1�n+ 2� is not an
extension cover of �Z2n−1� Z2�.

The groups B3�n+ 2� and B8�n+ 2� each contains four cyclic subgroups of
order 2n−1 which are normal in G, and the automorphisms of these groups defined
by conjugation is either quasiabelian or trivial. In this case, there is no element of
order two where conjugation by that element is the quasiabelian automorphism,
and so all of the extensions of Z2n−1 by Z2 contained in B3�n+ 2� and B8�n+ 2�
are abelian. It follows that B3�n+ 2� and B8�n+ 2� are not extension covers of
�Z2n−1� Z2�.

The group B5�n+ 2� contains four cyclic subgroups of order 2n−1 which are
normal in G. For two of these groups, the index of the centralizer in G is 2, and
the automorphism is the quasiabelian automorphism. Since these automorphisms
are given by conjugation by elements of order greater than 2, the only extensions
of these groups are abelian groups. For the other two cyclic groups, the group
G/CG�H�, where H is the cyclic subgroup, is cyclic of order 4 and it is generated by
an automorphism of H of order 4. Again, the only automorphisms of order 2 are
quasiabelian. Again these automorphisms are given by conjugation by elements of
order greater than 2 and so the only extensions of these groups are abelian groups.
It follows that B5�n+ 2� is not an extension cover of �Z2n−1� Z2�.
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The groups M1�n+ 2� and M2�n+ 2� each contains four cyclic subgroups of
order 2n−1. For two of these subgroups, the centralizer is the entire group. For the
other two, the centralizer and the normalizer are equal and have index 2 in the
group. Thus, all extensions in G are abelian, and they are not extension covers
of �Z2n−1� Z2�. The group Q4�n+ 2� is similar, except that one of the two normal
subgroups has centralizer of index 2 in G with a quasiabelian action which is not
realized by any elements of order 2.

The groups Q1�n+ 2� and Q3�n+ 2� each contains four cyclic subgroups of
order 2n−1. Two of these groups are normal in the whole group. In Q1�n+ 2�, both
groups have centralizer of index 2. In Q3�n+ 2�, one of these groups has centralizer
of index 2 and, in the other, the centralizer is the whole group. In the three nontrivial
cases above, the action is the quasiabelian action. In both groups, Q1�n+ 2� and
Q3�n+ 2�, the remaining two cyclic subgroups have normalizer of index 2 in the
whole group and centralizer of index 2 in the normalizer. In each of these cases,
the action is the quasiabelian action. Therefore, these two groups are not extension
covers of �Z2n−1� Z2�.

It follows that if T�n� is a group with �T�n�� < 2n+3, then T�n� is not a
�Z2n−1� Z2� extension cover. Therefore, G�n� is a minimal extension cover.

In the n = 5 case, using Magma, it is possible to show that there are 12
nonisomorphic �Z16� Z2� extension covers of order 256, and so G�5� is not a unique
minimal extension cover. In fact, G�5� � SmallGroup�256� 26970� in the Magma
Library.
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