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Abstract. Let G be a finite group of odd order. The sym-
metric genus σ(G) is the minimum genus of any Riemann
surface on which G acts faithfully. Suppose G acts on a Rie-
mann surface X of genus g ≥ 2. If |G| > 8(g − 1), then
|G| = K(g − 1), where K is 15, 21

2 , 9 or 33
4 . We call these

four types of groups LO-1 groups through LO-4 groups, re-
spectively. These groups are quotients of Fuchsian triangle
groups of type (3, 3, n), for n = 5, 7, 9 and 11, respectively.
They are generated by two elements of order 3, and we obtain
restrictions on the powers of the primes dividing the orders
of such groups. Let J be the set of integers g for which there
is an LO-group of symmetric genus g. These restrictions are
sufficient to prove that the set J has density 0 in the set of
positive integers. In addition, we study the metabelian LO-3
groups, and classify the integers that are the genus values of
metabelian LO-3 groups.

1. Introduction.

Let G be a finite group. Among the various genus parameters as-
sociated with the group G, the most classical is perhaps the strong
symmetric genus σ0(G), the minimum genus of any Riemann surface
on which G acts faithfully and preserving orientation. Work with this
parameter dates back over a century and includes the fundamental
84(g − 1) bound of Hurwitz [5].

A closely related parameter is the symmetric genus σ(G), the mini-
mum genus of any Riemann surface on which G acts (possibly reversing
orientation). Obviously σ(G) ≤ σ0(G) always, but in some (important)
cases, the two parameters agree. If the group G does not have a sub-
group of index 2, then G cannot act on a surface reversing orientation
and thus σ(G) = σ0(G). In particular, if G is a group of odd order,
then σ(G) = σ0(G).
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Here we consider groups of odd order, in particular, the groups of
odd order that act as “large” automorphism groups of odd order of
Riemann surfaces. If the odd order group G acts on a Riemann surface
of genus g ≥ 2, then |G| ≤ 15(g − 1). Further, if |G| > 8(g − 1),
then |G| = K(g − 1), where K is 15, 21

2
, 9 or 33

4
. We call these four

types of groups LO-1 groups through LO-4 groups, respectively, and an
LO-group means a group of one of these four types. These groups are
quotients of Fuchsian triangle groups of type (3, 3, n), for n = 5, 7, 9
and 11, respectively. Also, three of the four are quotients of triangle
groups of type (3, 3, p), where p is a prime. Not surprisingly, whether
the prime p is congruent to 1 or 2 modulo 3 is important. The types
of groups considered as LO-groups could be expanded by allowing the
non-euclidean area of the triangle group to be larger and the lower
bound 8(g− 1) to be smaller. With a larger non-euclidean area for the
triangle group, not all of the quotient groups would be generated by two
elements of order 3. Also the bound 8(g−1) is a nice one, numerically.
Therefore, these LO-groups are our main focus. We consider some
general theorems about solvable groups generated by two elements of
order 3 in Section 3.

The basic results about the LO-groups were obtained in [8]; the
emphasis there was on LO-1 groups with some consideration of LO-2
groups. We are interested in the positive integers that are the sym-
metric genus of an LO-group. While there are infinitely many LO-1
groups (of infinitely many different genera) [8, Cor. 5], these groups
occur rather infrequently. For example, there are LO-1 groups of order
75 and 375, but the “next” LO-1 group that we know has order 9375.
The situation for LO-2 and LO-4 groups is similar. Of course, LO-3
groups are different, and there is a richer supply of these groups, but,
still, the integers that are the genus values of LO-3 groups are quite
limited.

To interpret our results we use the standard notion of density. One
of our main results is the following.

Theorem 1. Let J be the set of integers g for which there is a LO −
group of symmetric genus g. Then the set J has density 0 in the set
of positive integers.

To establish this result, we consider the integers that are the orders
of each of the types of LO-groups. In each case, we obtain a restriction
on the powers of the primes dividing the group order. For example, let
G be an LO-2 group. Then if q is a prime, q > 3, q 6= 7, such that q
divides |G|, then we show that q2 divides |G|. We can do better than
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this for LO-1 and LO-4 groups, and LO-3 groups have similar results.
These restrictions are sufficient to prove Theorem 1.

The techniques employed can be generalized to give results about
solvable groups generated by elements of order 3. For instance, we
have the following interesting result.

Theorem 2. Let L be the set of integers n for which there is a solvable
group G generated by two elements of order 3 such that |G| = n. Then
the set L has density 0 in the set of positive integers.

In addition, we study the metabelian LO-3 groups. We construct
a family of finite groups so that every metabelian LO-3 group is a
quotient of one of the groups in the family. We then use this family
to classify the integers that are the genus values of metabelian LO-3
groups.

2. Background Results.

We use the standard well-known approach to group actions on sur-
faces of genus g ≥ 2. Let the finite group G act on the (compact)
Riemann surface X of genus g ≥ 2. Represent X = H/K, where H is
the hyperbolic plane and K is a Fuchsian surface group. Then obtain
a Fuchsian group Γ and a homomorphism φ : Γ→ G onto G such that
K = kernel φ. Associated with the Fuchsian group Γ are its signature
and canonical presentation. It is basic that each period of Γ divides
|G|. Further, the non-euclidean area µ(Γ) of a fundamental region for
Γ can be calculated directly from its signature [11, p.235]. Then the
genus of the surface X on which G acts is given by

(1) g = 1 + |G| · µ(Γ)/4π.

Especially important in the study of large group actions on Riemann
surfaces are the triangle groups. A Fuchsian group is a triangle group
if it has signature

(0; +; [`,m, n]; {}), where 1/`+ 1/m+ 1/n < 1.

We denote a group with this signature by Γ(`,m, n).
The general upper bound 168(g - 1) for the size of the (full) automor-

phism group of a surface of genus g ≥ 2 can be improved considerably
for groups of odd order. The following result [8, Prop. 1] is elementary.

Proposition 1. Let G be a finite group of odd order. Suppose G acts
on a Riemann surface X of genus g ≥ 2. Then |G| ≤ 15(g − 1).
Further, if |G| > 8(g−1), then |G| is one of the following; in each case
G is a quotient of the listed triangle group by a surface group.
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1) |G| = 15(g − 1) Γ(3, 3, 5)
2) |G| = 21

2
(g − 1) Γ(3, 3, 7)

3) |G| = 9(g − 1) Γ(3, 3, 9)
4) |G| = 33

4
(g − 1) Γ(3, 3, 11)

Thus the group G is an LO-group if and only if G is a quotient ∆/K,
where ∆ is the triangle group Γ(3, 3, n) with the period n = 5, 7, 9 or
11 and K is a surface group. The group ∆ has presentation

(2) x3 = y3 = (xy)n = 1.

Since the surface group K contains no elements of finite order, the
quotient G is generated by two elements X, Y of order 3 such that the
product XY has order n. Hence G has partial presentation (2), with
the relation (xy)n = 1 fulfilled. If n is not a power of 3, then G is
solvable, but not nilpotent.

The case n = 9 is different, of course. The LO-3 group G can be
a 3-group and hence nilpotent. However |G| can also involve primes
other than 3, in which case, it is solvable, but not nilpotent. In any
case, an LO-3 group must have a nilpotent LO-3 quotient group. In
general, these groups require different ideas, and much of our work here
concerns LO-3 groups.

The only odd order groups that have (strong) symmetric genus 0 are
cyclic [4, Th. 6.3.1, p. 285]. Clearly, just from partial presentation
(2), no LO-group is cyclic and has genus zero. However, there are LO-
groups of genus 1. Obviously, no LO-group can be abelian. It follows
that an LO-group with σ = 1 must be in class (c) [4, p. 281]. A group
in class (c) has partial presentation

(3) x3 = y3 = (xy)3 = 1.

Next we present a family of groups of odd order that contain some
small LO-groups. Let p be an odd prime, p ≥ 5, and let Zp × Zp have
presentation

(4) Xp = Y p = 1, XY = Y X.

Then let the group H3p2 be the nonabelian group of order 3p2 with
generators X, Y and A and relations (4) together with

(5) A3 = 1, A−1XA = Y,A−1Y A = X−1Y −1.

The following basic result was established in [8, Prop. 4].

Proposition 2. Let p be an odd prime, p ≥ 5. Then
(1) σ(H3p2) = 1.
(2) H3p2 is a quotient of a triangle group Γ(3, 3, p) with kernel a surface
group, and H3p2 acts on a surface of genus 1 + p(p− 3)/2.
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The groupH3·52 is an LO-1 group with an action on a surface of genus 6.
We denote this group H75. The groups H3·72 and H3·112 are LO-groups
as well.

The derived series of LO-groups were also considered in [8], with the
exception of LO-3 groups. The following is basic; for a proof, see [8,
Lemma 1].

Lemma 1. Let p be an odd prime, p ≥ 5, and let Γ = Γ(3, 3, p). Then
(1) Γ/Γ′ ∼= Z3

(2) Γ′/Γ′′ ∼= Zp × Zp
(3) Γ/Γ′′ ∼= H3p2

Next we consider the first two steps of the derived series of a quotient
of Γ(3, 3, p) by a surface group. There are two cases, depending upon
whether p is congruent to 1 or 2 modulo 3.

Proposition 3. Let p be a prime congruent to 2 (mod 3), and let G
be a quotient of Γ(3, 3, p) by a surface group. Then
(1) G/G′ ∼= Z3

(2) G′/G′′ ∼= Zp × Zp
(3) G/G′′ ∼= H3p2

Proof: By Lemma 1, G/G′′ is the image of H3p2 . If the kernel of this
map K is non-trivial, then G/K is cyclic, since an element of order 3
cannot act non-trivially on a group of order p.

Next assume p ≡ 1 (mod 3). Then the single nonabelian group of
order 3p has presentation

(6) Xp = Y 3 = 1, Y −1XY = Xr,

where r3 ≡ 1 (mod p) and r 6≡ 1 (mod p). We denote this group
G3p. The following result was established in [8, Prop. 7].

Proposition 4. Let p be an odd prime such that p ≡ 1 (mod 3).
Then
(1) σ(G3p) = 1.
(2) G3p is a quotient of a triangle group Γ(3, 3, p) with kernel a surface
group and G acts on a surface of genus 1 + (p− 3)/2.

In particular, the group G3·7 is an LO-2 group that acts on a surface
of genus 3; henceforth we denote this group G21.

Continue to assume that p is an odd prime such that p ≡ 1 (mod 3).
In this case the group H3p2 has a normal subgroup N of order p such
that H3p2/N ∼= G3p; for more details, see [8, Prop. 8]. Now we have
the analog of Proposition 3 for groups of this type.
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Proposition 5. Let p be a prime congruent to 1 (mod 3), and let G be
a quotient of Γ(3, 3, p) by a surface group. Then G/G′ ∼= Z3. Further,
G/G′′ is isomorphic to either G3p or H3p2; in either case, G has a
normal subgroup M such that G/M ∼= G3p.

Since the derived length of any group in class (c) is at most two [4,
Th.6.3.4, p.296], these results yield a classification of groups of this
type with symmetric genus one.

Theorem 3. Let G be a quotient of Γ(3, 3, p) by a surface group.
(1) Let p be a prime congruent to 2 (mod 3). Then σ(G) = 1 if and
only if G ∼= H3p2.
(2) Let p be a prime congruent to 1 (mod 3). Then σ(G) = 1 if and
only if G is isomorphic to G3p or H3p2.

Some of our main results use the standard notion of density. Let I
be a set of positive integers. For a positive integer n, let f(n) denote
the number of integers in the set I that are less than or equal to n.
Then the natural density δ(I) of I in the set of positive integers is

δ(I) = lim
n→∞

f(n)

n
.

In stating results, it is sometimes convenient to use the standard con-
cept of asymptotic functions. The function f(x) is said to be asymptotic
to the function g(x), written f(x) ∼ g(x), if and only if

lim
n→∞

f(n)

g(n)
= 1.

3. Solvable groups generated by elements of order 3.

Now we establish two results about solvable groups generated by
elements of the same prime order. Both results apply to LO-groups.

Theorem 4. Let G be a finite solvable group which is generated by two
or more elements of order p, where p is an odd prime, and let q be a
prime not congruent to 1 (mod p). If q divides |G|, then q2 divides |G|.

Proof: Suppose to the contrary that |G| = qm, where q does not divide
m. Consider the factors G(n−1)/G(n) in the derived series. There exists
a value of n ≥ 2, so that q divides the order of the factor G(n−1)/G(n).
Now G(n−1)/G(n) ∼= Zp ×M , where q does not divide |M |. Therefore,
if Q is the Sylow q-subgroup of G/G(n), then Q is normal in G/G(n).
By the Schur-Zassenhaus Theorem, G/G(n) ∼= Q ×φ H, where H is a
subgroup of G/G(n). Now H/CH(Q) is isomorphic to a subgroup of
the cyclic group Aut(Q) of order q − 1. It follows that H ′ ⊆ CH(Q).
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Since H is generated by elements of order p, H/H ′ is an elementary
abelian p-group. It follows that either H = CH(Q) or |H/CH(Q)| = p.
If H = CH(Q), then G/G(n) ∼= Q ×H and G cannot be generated by
elements of order p. It follows that |H/CH(Q)| = p and p divides q−1,
which is also a contradiction. Therefore, q2 divides |G|.

Corollary 1. Let G be a finite solvable group which is generated by
two or more elements of order 3, and let q be a prime congruent to
2 (mod 3). If q divides |G|, then q2 divides |G|.

We specialize to quotients of Γ(3, 3, p) and obtain a stronger result.

Theorem 5. Let p 6= 3 be an odd prime, and let G be an odd order
group that is the quotient of Γ(3, 3, p) by a surface group. Let q be
an odd prime other than 3 or p. If q divides |G|, then q2 divides |G|.
Furthermore, in case p is congruent to 2 (mod 3), if q divides |G|, then
q3 divides |G|.

Proof. Assume that the odd prime q divides |G|. Among all quotients
of G that are the quotient of Γ(3, 3, p) by a surface group and also
have order divisible by q, let J be one of smallest order. Let M be a
minimal normal subgroup of J contained in J ′′. Since G is solvable, the
subgroup M is an elementary abelian π-group for some prime π. But
by the minimality of J , the prime π must equal q and the index [J : M ]
must be relatively prime to q, since otherwise the quotient J/M would
be an image of Γ(3, 3, p) with order divisible by q and smaller than |J |.
Hence we can write M ∼= (Zq)

r for some positive integer r.
Let H = J/M . Then H is a quotient of Γ(3, 3, p) by a surface group,

because |M | is relatively prime to 3 and p. Since q does not divide |H|,
we know that the group J ∼= M ×φ H, where φ : H −→ Aut(M), by
the Schur-Zassenhaus Theorem. Define K = kernel(φ). We show that
[H : K] > 3. First, K 6= H, since M ×K is obviously not a quotient
of Γ(3, 3, p).

Suppose that [H : K] = 3. Now J has a normal subgroup L ∼= M×K
and [J : L] = [H : K] = 3. Hence, by Proposition 3, L = J ′. But
q divides |L/L′|, since M is abelian. This is a contradiction, since
L/L′ ∼= J ′/J ′′ and J is an image of Γ(3, 3, p) so that Proposition 3
applies. Therefore, [H : K] > 3.

Suppose that r = 1 and hence M ∼= Zq. Now the quotient group
H/K is an image of Γ(3, 3, p). Let H = 〈a, b〉, where |a| = |b| = 3
and |ab| = p. Now, if the image of AB has order 1 in H/K, then
[H : K] = 3, since H/K = 〈aK〉.

Further, H/K is isomorphic to a subgroup of Aut(M) = Zq−1.
Therefore, H/K is abelian and we get a contradiction. Clearly, r 6= 1.
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Suppose that r = 2 and p is congruent to 2 (mod 3). Then H/K ⊆
Aut(M) = GL(2, q) and the group H/K has a non-trivial Sylow p-
subgroup P . The order of GL(2, q) forces the prime q to be congruent
to ±1 (mod p). Also, P ⊆ H ′K/K ⊆ SL(2, q), since SL(2, q) is the
commutator subgroup of GL(2, q).

By Proposition 3, P cannot be cyclic. This is a contradiction, be-
cause the Sylow p-subgroups of SL(2, q) are cyclic [3, p. 42]. Thus
r ≥ 3, and q3 divides |G|.

Now we consider quotients of the triangle group Γ(3, 3, 3n). It is
possible that G is a 3-group if n is a power of 3. The 3-groups that
are quotients of Γ(3, 3, 9) were studied by Zomorrodian [12]. Assume
first that G is a 3-group that is an image of Γ(3, 3, 3k) for k > 1 by a
surface group. Then 27 divides |G|, obviously. It is not hard to see, in
an elementary way, that |G| cannot be 27; for details, see [12, p. 240].
Thus, if the LO-3 group G is a 3-group, |G| ≥ 81.

The classification of the first few terms of the lower central series
of the triangle group Γ(3, 3, 9) by Zommorodian [12, p. 242] may be
extended to quotients of the triangle group Γ(3, 3, 3n).

Lemma 2. Let Γ = Γ(3, 3, 3n). Then
(1) Γ/Γ′ ∼= Z3 × Z3.
(2) Γ′/Γ′′ ∼= Zn × Zn × Z × Z.

Proof: Let Γ = Γ(3, 3, 3n) have presentation 〈x, y|x3 = y3 = (xy)3n〉.
Define u = [y−1, x−1], v = [x, y−1], w = [y, x−1] and z = wx

−1
. It is

easy to show that

(7) ux = v, vx = u−1v−1, wx = z−1w−1, zx = w

and

(8) uy = w−1, vy = wz,wy = uw−1, zy = wu−1v−1z−1w−1.

Therefore Γ′ = 〈u, v, w, z〉. Also, the group Γ′ has relators

(vw)n = (uz)n = (uwzv)n = 1.

Up to this point, all of the calculations have been in the group Γ.
For the rest of the proof, we will consider the elements u, v, w and z
as representing cosets in Γ′/Γ′′.

It follows that

(9) (uz)x = vw, (vw)x = (uz)y = (uz)−1(vw)−1 and (vw)y = uz.

Therefore, N = 〈uz, vw〉 ∼= Zn × Zn is a normal subgroup of Γ/Γ′′.
It is also known that since Γ′/Γ′′ is finitely generated, it is a direct
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product of finite and infinite cyclic groups. This completes the proof.

In the rest of the paper, we will consider LO-3 groups, instead of
general quotients of Γ = Γ(3, 3, 3n). The techniques applied will work
in the general case, however.

4. LO-1, LO-2 and LO-4 groups.

Our first goal is to consider the set of integers g for which there is a
LO-1 group of symmetric genus g and show that this set has density
zero in the set of positive integers. The key to the proof is the following
application of Theorem 5.

Corollary 2. Let G be an LO-1 group and let q be a prime, q > 5. If
q divides |G|, then q3 divides |G|.

This is the best possible result of this type, since it is possible to
construct a semi-direct product (Z11)

3 ×φ H75 that is an LO-1 group
of order 99825 = 3 · 52 · 113.

The power of 3 in the order of an LO-1 group is restricted.

Proposition 6. Let G be an LO-1 group. If 9 divides |G|, then 81 = 34

divides |G|.

Proof. Let G be an LO-1 group such that 9 divides |G|. By Propo-
sition 3, we know that [G : G′′] = 75 so that 3 divides |G′′|. Let P be
the Sylow 3-subgroup of G′′ Assume that |P | is 3 or 9. Then in either
case, P has a normal 3-complement Q in G′′; this is a consequence of
Burnside’s Theorem [10, pp. 137, 138, 141]. But Q is characteristic in
G′′ and hence normal in G. Then the quotient group G/Q is an LO-1
group of order 225 = 75 · 3 or 675 = 75 · 9. There is no LO-1 group of
either order. Hence |P | ≥ 27 and 81 divides the order of G.

The order of an LO-1 group is always divisible by 25, of course. The
order of the LO-1 group of order 375 is divisible by 53, but we do not
know if a result like Proposition 6 about powers of 5 is possible.

Let G be an LO-1 group. Then by Corollary 2 and Proposition 6,
the order of G has the form

(10) |G| = 3i · 5j · pn1
1 · pn2

2 · · · pnt
t ,

where i = 1 or i ≥ 4, j ≥ 2, each pi is a prime larger than 5, and each
exponent ni ≥ 3 (possibly t = 0).

Now we turn our attention to the general problem of classifying the
integers g for which there is a LO-group of symmetric genus g. Let J1
be the set of integers g for which there is a LO-1 group of symmetric
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genus g. We know that the set J1 is an infinite set, since there is
a construction that shows that there are infinitely many extensions
of abelian groups by LO-1 groups that are also LO-1 groups. The
construction uses the theory of covering spaces and the fundamental
group; see [8, Section 4]. This construction only shows the existence
of infinite families of LO-1 groups, however, and does not produce
presentations of the groups. Corollary 2 and a result from analytic
number theory combine to yield the density of J1.

A positive integer n is said to be cube-full if whenever the prime p
divides n, p3 divides n. The density of the set of cube-full integers is
well-understood; see [6, Section 14.4].

Lemma 3. Let f(n) be the number of cube-full integers less than or
equal to n. Then

f(n) ∼ Cn1/3,

where C is a constant.

Let G be an LO-1 group of symmetric genus g = σ(G). Then by
Proposition 1, g = 1 + |G|/15, and thus from (7) g = 1 +M/25, where
M is a cube-full integer. This gives the following.

Theorem 6. Let J1 be the set of integers g for which there is a LO-1
group of symmetric genus g. Then the set J1 has density zero in the
set of positive integers.

Next we briefly consider the other LO-groups that are similar to LO-
1 groups as quotients of triangle groups Γ(3, 3, p), where p is a prime.
First LO-4 groups are quotients of the triangle group Γ(3, 3, 11) and
11, like 5, is congruent to 2 (mod 3). We note the following application
of Theorem 5.

Corollary 3. Let G be an LO-4 group and let q be a prime, q > 3,
q 6= 11. If q divides |G|, then q3 divides |G|.

The key point is that the Sylow 11-subgroups of SL(2, q) are cyclic,
where the prime q must be congruent to ±1 (mod 11) [3, p. 42]. The
analog of Theorem 6 holds in the same way for LO-4 groups.

Theorem 7. Let J4 be the set of integers g for which there is a LO-4
group of symmetric genus g. Then the set J4 has density zero in the
set of positive integers.

For LO-2 groups, Theorem 5 gives the following.

Corollary 4. Let G be an LO-2 group and let q be a prime, q > 3,
q 6= 7. If q divides |G|, then q2 divides |G|.
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There exist LO-2 groups with a cyclic Sylow 7-subgroup, however,
so that the final part of the proof of Theorem 5 cannot be used. It
is possible, for example, to construct an LO-2 group of order 27951 =
3 · 7 · 113. However, we do not know an example of an LO-2 group G
such that |G| is “only” divisible by the square of a prime other than 3
and 7.

Nevertheless, Corollary 4 is enough to determine the analog of The-
orem 6 for LO-2 groups. A positive integer n is said to be square-full
if whenever the prime p divides n, p2 divides n. The density of the set
of square-full integers is also well-known [2].

Lemma 4. Let f(n) be the number of square-full integers less than or
equal to n. Then

f(n) ∼ Cn1/2,

where C is a constant.

Let G be an LO-2 group of symmetric genus g = σ(G). Then by
Proposition 1, g = 1 + 2|G|/21, and it follows that g = 1 + 2M/(9 ·49),
where M is a square-full integer. Thus by Lemma 4, we have the
following.

Theorem 8. Let J2 be the set of integers g for which there is a LO-2
group of symmetric genus g. Then the set J2 has density 0 in the set
of positive integers.

5. LO-3 groups.

Now we consider LO-3 groups. The LO-3 groups that are 3-groups
were studied by Zomorrodian [12]. However, there are LO-3 groups
that are not 3-groups. It is easy to find such groups in the MAGMA
Small Groups Library. For example, there two LO-3 groups of order
34 · 7.

The classification of the first two terms of the lower central series of
the triangle group Γ(3, 3, 3n) was done in Lemma 2. If Γ(3, 3, 3n) =
〈x, y〉, then the actions of x and y on Γ′ = 〈u, v, w, z〉 are given in
equations (7) and (8). In this section we will restrict ourselves to
quotients of Γ(3, 3, 9).

Let G be an LO-3 group with partial presentation

(11) x3 = y3 = (xy)9 = 1.

Immediately, the commutator quotient group G/G′ is either Z3 or Z3×
Z3. Both are possible, and this is the source of one of the difficulties
in dealing with LO-3 groups.

For groups of symmetric genus one, we have the following result.
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Lemma 5. Let G be an LO-3 group. If σ(G) = 1, then G/G′ ∼= Z3×Z3.

Proof. Since σ(G) = 1, the group G has class (c) and has a normal
abelian subgroup T of index 3 [4, p. 296]. If G is a 3-group, then
G/G′ ∼= Z3 × Z3. Assume that G is not a 3-group. But then |G| and
|T | are divisible by some prime p > 3. Since T is abelian, T has a
non-trivial 3-complement Q. Then Q is characteristic in T and normal
in G. Now G/Q is a 3-group of order at least 9 and has an abelian
quotient of order 9. Hence G/G′ ∼= Z3 × Z3.

In what follows, we will use the letters x,y,u,v,w and z both for
elements of Γ and for the images of such elements in any quotient
group G. The context will make clear what is meant.

Now it is not difficult to classify the LO-3 groups of genus one. We
use the notation SG(n, k) to denote group k of order n in the MAGMA
Small Groups library.

Theorem 9. If G is an LO-3 group with σ(G) = 1, then G is either
SG(81,9) or SG(243,26).

Proof. LetG have partial presentation (11). We knowG′ = 〈u, v, w, z〉.
By Lemma 5, G/G′ ∼= Z3×Z3. ThenG has exactly four subgroups of in-
dex 3, and these subgroups are M1 = 〈x〉G′, M2 = 〈y〉G′, M3 = 〈xy〉G′
and M4 = 〈x−1y〉G′. Since σ(G) = 1, one of these four subgroups is
abelian and has rank 2.

Suppose that M1 were abelian and had rank 2. Then u = ux = v,
v = vx = u−1v−1 and so o(u) = 3. The same argument says that
z = w and o(w) = 3. Then M1 is generated by elements of order 3 so
that G is a 3-group with |G| ≤ 27. This is not possible, since G is an
LO-3 group. Hence M1 cannot be abelian. In the same way, M2 is not
abelian either.

Suppose that M4 were abelian. Then yx−1 = x(x−1y)x−1 ∈ M4.
Then x−1y · yx−1 = yx−1 · x−1y. But this gives (yx)3 = 1, which is a
contradiction, since o(yx) = o(xy) = 9. Thus M4 cannot be abelian.

Therefore, M3 = 〈xy〉G′ = 〈xy, yx〉 is abelian, generated by two
elements of order 9. Now the LO-3 group G is a 3-group of order
3|M3| ≤ 243. But |G| cannot be less than 81. Hence |G| is 81 or 243.
A survey of the groups of orders 81 and 243 using MAGMA shows that
G is either SG(81, 9) or SG(243, 26).

Another source of difficulty in dealing with LO-3 groups is that if G
is an LO-3 group with a normal subgroup N of index greater than 3, it
may not be true that G/N is an LO-3 group. Let G be an LO-3 group
with partial presentation (11), and let N be a proper normal subgroup
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of G. Obviously, if x, y or xy is in N , then [G : N ] = 3. We record the
following easy result.

Lemma 6. Let G be an LO-3 group with partial presentation (11). Let
N be a normal subgroup with [G : N ] > 3, and let Q = G/N .
(1) If (xy)3 ∈ N , then σ(Q) = 1.
(2) If (xy)3 /∈ N , then Q is an LO-3 group.

Corollary 5. If 3 does not divide |N |, then G/N is an LO-3 group.

We also note the following basic result about the order of an LO-3
group.

Proposition 7. If G is an LO-3 group, then 81 divides |G|.

Proof. First, we know that 81 divides |G| if G is a 3-group. Assume
that G is not a 3-group. We know that 9 divides |G| and |G/G′| is 3
or 9. Also, 3 divides |G′|, by Corollary 5.

Assume to the contrary that 81 does not divide |G|, and let P be
the Sylow 3-subgroup of G′. If |G/G′| = 9, then we must have |P | = 3.
If |G/G′| = 3, then |P | is either 3 or 9. In any case, P has a normal
3-complement L in G′, as a consequence of Burnside’s theorem, since
3 is the smallest prime dividing |G′| [10, pp. 139, 141]. But L is char-
acteristic in G′ and thus normal in G. Then the 3-group G/L is an
LO-3 group by Corollary 5, which is a contradiction, since |G/L| is 27
or less. Hence 81 divides |G|.

Next we consider the analogs of Corollary 2 and Theorem 6 for LO-3
groups. First, by Corollary 1 we have the following.

Corollary 6. Let G be a finite LO-3 group and let p be a prime con-
gruent to 2 (mod 3). If p divides |G|, then p2 divides |G|.

Let G be an LO-3 group. Then by Corollary 6 and Proposition 7,
the order of G has the form

(12) |G| = 3i · pn1
1 · · · pns

s · q
m1
1 · · · qmt

t ,

where i ≥ 4, each pj is a prime congruent to 1 (mod 3) (possibly
s = 0), each qj is a prime congruent to 2 (mod 3), and each exponent
mj ≥ 2 (possibly t = 0). Then by Proposition 1, the symmetric genus
g = σ(G) = 1 + |G|/9, and thus g − 1 is the product of primes that
are not congruent to 2 (mod 3) and an integer that is “square-full” of
primes that are congruent to 2 (mod 3). Let f(n) be the number of
integers of this form that are less than or equal to n. We use results
from analytic number theory to obtain an upper bound for f(n).
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Lemma 7. The number of integers n, n ≤ x, that are not divisible
by any prime p ≡ 2 (mod 3) does not exceed Cx(log x)−1/2, for some
constant C.

Proof. This is a well-known result in analytic number theory. It can
be established by combining Theorem 3.6 and Corollary 4.12(d) in [9].

Lemma 8. Let B be the set of all square-full integers greater than a
fixed positive integer y. Then

∑
b∈B

1
b
≤ C√

y
, for some constant C.

Proof. We begin by converting the series to a Riemann-Stieltjes inte-
gral over the function α(t) =

∑
y<b≤t 1, where the values of b are the

square-full integers in this range. Note that α(t) ≤ C
√
t. Next we use

integration by parts and derive the following.∑
b∈B

1

b
=

∫ ∞
y

1

t
dα = [

1

t
α(t)]∞y +

∫ ∞
y

α(t)

t2
dt ≤ lim

t→∞

C
√
t

t
+

∫ ∞
y

Ct−3/2dt

The result follows by integration.

Lemma 9.

f(n) ≤ Cn

(log n)1/2
,

for some constant C.

Proof. Assume that a is an integer that is a product of primes not
congruent to 2 (mod 3) and that b is an integer that is a product of
squares of primes that are congruent to 2 (mod 3). Then every number
counted in f(n) is a product of the form a · b. By Lemma 7

f(n) =
∑
ab≤n

1 =
∑
b≤
√
n

∑
a≤n

b

1 +
∑
b>
√
n

∑
a≤n

b

1 ≤
∑
b≤
√
n

C · n
b√

log(n
b
)

+
∑
b>
√
n

n

b
.

Now by Lemma 8,
∑

b>
√
n
n
b

= n ·
∑

b>
√
n

1
b
≤ D · n

4√n , for some constant

D.
Also, for b ≤

√
n, we have that log(n

b
) ≥ log(

√
n) and∑

b≤
√
n

C · n
b√

log(n
b
)
≤ Cn√

.5 log(n)
·
∑
b≤
√
n

1

b
.

By Lemma 8, the series
∑

b≤
√
n

1
b

is bounded. It follows that

f(n) ≤ C1n√
log(n)

+D · n
4
√
n
,
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for some constant C1. The result follows.

An immediate consequence of Lemma 9 is the following.

Theorem 10. Let J3 be the set of integers g for which there is a LO-3
group of symmetric genus g. Then the set J3 has density zero in the
set of positive integers.

Combining Theorems 6, 7, 8 and 10 yields Theorem 1.
Also, Lemma 9 and Corollary 1 prove Theorem 2.

6. Metabelian LO-3 groups.

Now we consider the metabelian LO-3 groups because they are im-
portant in questions about the genus spectrum. We have a restriction
on the orders of LO-3 in equation (12). Suppose that n is any integer
of the form n = 3i ·

∏
p∈R p

`p ·
∏

q∈S q
mq , where i ≥ 4, R is a finite set

of primes of the form p ≡ 1 (mod 3) and S is a finite set of primes of
the form q ≡ 2 (mod 3). By (12), the exponents mq must be at least 2.
We will show that if all the exponents mq are even, then there exists
a metabelian LO-3 group with |G| = n. One obvious consequence is
that if n is an integer divisible by 81 and all other primes that divide
n are of the form p ≡ 1 (mod 3), then n is the order of a metabelian
LO-3 group.

Definition 1. Let ∆(3, 3, 9) = Γ(3, 3, 9)/Γ(3, 3, 9)′′.

Every metabelian LO-3 group is a quotient of the infinite group
∆(3, 3, 9). Next we will construct a family of finite quotient groups of
∆(3, 3, 9) so that every metabelian LO-3 group is a quotient of one of
these groups.

Definition 2. Let G(m) be the group ∆(3, 3, 9)/N where N is the
normal closure of the subgroup 〈([y−1, x−1])m〉 = 〈um〉 in ∆(3, 3, 9).

The group G(m) is a finite metabelian quotient of the (3, 3, 9) triangle
group. Let H = ∆(3, 3, 9). Using equations (7) and (8), it is easy to
show that N = 〈um, vm, wm, zm〉 = (H ′)m. Now G(m) = H/N . Notice
that if 3 does not divide m, the relation (vw)3 = 1 implies that v = w−1

and similarly u = z−1. In this case, |G| = 9m2 and by Proposition 7,
G is not an LO-3 group. Therefore, we will consider the groups G(3n).
The group G(3n) has order 729n2.

Theorem 11. Let G be a finite metabelian LO-3 group. Then G is a
quotient of the group G(3n) for some integer n.
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Proof: The order of any of the commutators, u, v, w and z in G is the
same and 3 divides m = |u|. So, m = 3n and it follows that G satisfies
all of the relations of G(3n). Hence G is a quotient of that group.

Let p > 3 be a prime that divides the integer n. Let P be a Sylow p-
subgroup ofG(3n). Since P is contained inG′(3n) ∼= Z3×Z3×Z3n×Z3n,
it is an abelian p-group of rank 2 and is normal in G(3n). Therefore,
any finite metabelian LO-3 group G has Sylow p-subgroups that are
abelian of rank 2 or less.

Next we determine the center of G(3n).

Proposition 8. Consider the group G(3n) for some integer n.
(1) if 3 does not divide n, then Z(G(3n)) ∼= Z3, and
(2) if 3 divides n, then Z(G(3n)) ∼= Z3 × Z3.

Proof: The group 〈uz, vw〉 is normal in G by (9) and isomorphic to
Z3 × Z3. Also 〈uz, vw, u, v〉 = G′. Let G = G(3n) and suppose that
a = uλvrwszt ∈ G′, where −1 ≤ λ ≤ 1, −1 ≤ r ≤ 1, 0 ≤ s ≤ 3n and
0 ≤ t ≤ 3n. Now a ∈ Z(G) if and only if ax = a and ay = a. From
ax = a, we deduce that λ+r ≡ 0 (mod 3), λ+r ≡ t+s (mod 3n), 2r−
λ ≡ 0 (mod 3) and 2r−λ ≡ 2s− t (mod 3n). Therefore, r ≡ s (mod n)
and λ ≡ t (mod n). The same congruences can be deduced from ay = a.
Now we see that r = −λ. It follows that s + t ≡ 0 (mod 3n) and so
s = −t. Also t = λ+ kn for some integer k and so s = −t = −λ− kn.
Now for −1 ≤ λ ≤ 1 and 0 ≤ k ≤ 2, we have

a = uλv−λw−λ−knzλ+kn = (uv−1w−1z)λ(w−1z)kn.

It is easy to check that 〈uv−1w−1z〉 ⊆ Z(G). Next, (w−nzn)x =
w−nzn and (w−nzn)y = u−2nv−nwnz−n.

Now, if 3 divides n, then since u3 = z−3, u2n = z−2n and similarly,
v−n = wn. Therefore, if 3 divides n, then (w−nzn)y = w2nzn = w−nzn

and w−nzn ∈ Z(G).
Suppose that 3 does not divide n. If w−nzn ∈ Z(G), then (unzn)2 =

(vnwn)−1. These two elements are independent and so both must be
trivial. Therefore, (uz)2n = (uz)3 = 1 and u = z−1, which can’t hap-
pen. This completes the proof.

Theorem 12. Let G be a finite metabelian LO-3 group. If |G| = pkm
for some prime p > 3, where gcd(p,m) = 1 and k is odd, then 3 divides
(p− 1).

Proof: Suppose that G is the image of a (3, 3, 9) triangle group with
generators x and y. Let P be the Sylow p-subgroup of G. Therefore,
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P ⊆ G′ and P has rank 2 or less. Let u = [y−1, x−1] ∈ G and suppose
that n = o(u). Therefore, G is a quotient of G(n) by a normal sub-
group N . Let Q be the Sylow p-subgroup of G(n). Now |Q| = p2` and
so Q ∩N is a normal subgroup of G(n) satisfying |Q ∩N | = pt, where

t is odd. If Q ∩N has rank 1, then (Q ∩N)p
t−1

is a normal subgroup
of order p. If Q∩N has rank 2, then Q∩N ∼= Zpr ×Zps , where r < s.

In this case, (Q ∩ N)p
s−1

is a normal subgroup of order p. Since the
normal subgroup of order p is not in the center of G(n), G(n) must act
on it non-trivially. It follows that 3 divides (p− 1).

Corollary 7. Let G be a finite metabelian LO-3 group, and let q be
a prime congruent to 2 (mod 3). If |G| = qkm, where gcd(q,m) = 1,
then k is even.

Primes congruent to 1 (mod 3) can occur to odd powers in the order
of a metabelian LO-3 group. For example, SG(567, 17) is an LO-3
group of order 34 · 7.

Lemma 10. let p be a prime congruent to 1 (mod 3). Let G = G(n),
with n = pkm, where gcd(p,m) = 1 and 3 divides m. There exist two
normal subgroups N of order p so that G/N is an LO-3 group.

Proof: Let u and v be the commutators defined in G. Define u = ump
k−1

and the other powers of the commutators similarly. Therefore u and
the rest have order p.

Since Aut(Zp) ∼= Zp−1, there is a unique subgroup 〈α〉 of Aut(Zp) of
order 3. If Zp = 〈c〉, then α(c) = ct, where t3 ≡ 1 (mod p) and t is
not congruent to 1 (mod p). There are two possible values of t. Notice
that t+ 1 ≡ −t2 (mod p).

Define N = 〈u(v)−t〉. Also since 3 divides m, z = (u)−1 and w =
(v)−1. Now

(uv−t)x = v(u−1v−1)−t = (utvt+1) = (utv−t
2

) = (uv−t)t,

and

(uv(−t))y = w−1(wz)−t = (w(−1−t)z(−t)) = (wt
2

z(−t)) = (utv(−t
2))

= (uv(−t))t.

It follows that N is a normal subgroup of G(n) of order p and there
is one such subgroup for each choice of t.

Lemma 11. Let G = G(n), where n = 3m, There exists a normal
subgroup N of order 9 so that G/N is an LO-3 group.
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Proof: Let N = 〈uv−1w−1z, wmz−m〉. Note that uv−1w−1z ∈ Z(G).
Now (wmz−m)x = (z−mw−m)w−m = wmz−m, since o(wm) = 3. Also

(wmz−m)y = (umw−m)(umvmzm) = (uv−1w−1z)−m(wmz−m).

It follows that N is normal in G and |N | = 9. It is not difficult to see
that vw /∈ N . Since (vw)x = (xy)3, we see that o(xN) = 3, o(yN) = 3
and o(xyN) = 9. This shows that G/N is an LO-3 group.

Now we classify the integers that are orders of metabelian LO-3
groups, and, consequently, the integers that are the genus values of
metabelian LO-3 groups.

Theorem 13. Let R be a finite set of primes congruent to 1 (mod 3)
and S a finite set of primes congruent to 2 (mod 3). For each prime
p ∈ R, let `p be a positive integer, and for each prime q ∈ S, let 2kq
be a positive even integer. Finally choose an integer i ≥ 4. Then there
exists a metabelian LO-3 group G of order

(13) 3i ·
∏
p∈R

p`p ·
∏
q∈S

q2kq .

Furthermore, the order of every metabelian LO-3 group has this form.

Proof: For each number `p, define αp = `p/2 if `p is even, and αp =
(`p + 1)/2 if `p is odd. Next define β = 1 if i ≤ 6. If i ≥ 6, then
let β = (i − 4)/2 if i is even and β = (i − 3)/2 if i is odd. Next
define n = 3β ·

∏
p∈R p

αp ·
∏

q∈S q
kq . Note that 3 divides n. The group

G(n) has order 81n2 = 34+2β ·
∏

p∈R p
2αp ·

∏
q∈S q

2kq . For every prime
p ∈ R such that `p is odd, we can find a normal subgroup Np of order
p by Lemma 10. Depending on the size of i, we can choose the normal
subgroup N3 of order 1, 3 or 9, by using either Z(G(n)) or Lemma 11.
The product of all of these normal subgroups is a normal subgroup N
and the quotient G(n)/N is an LO-3 group of order (13).

That the order of a metabelian LO-3 group has the form (13) is a
consequence of Proposition 7 and Corollary 7.

It is important to note the difference between the possible orders
for LO-3 groups in equation (12) and the orders for metabelian LO-3
groups in Theorem 13. The obvious question is whether every possible
order for an LO-3 group is realized by a metabelian LO-3 group. In [7],
every positive integer was shown to be the strong symmetric genus of
a group of a very restricted type. Also, Conder and Tucker conjecture
in [1, p. 285] that every number is the symmetric genus of a finite
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abelian or metabelian group. With regard to LO-3 groups, we make
the following conjecture (though we admit that we have very little
supporting evidence).

Conjecture 1. Let g be the genus of an LO-3 group. Then there exists
a metabelian LO-3 group G satisfying g = σ(G).

The smallest LO-3 group that is not metabelian isG = SG(1053, 51).
This group has a very interesting structure, but, as far as we can tell,
it is not part of an infinite family of groups. Also G/G′′ is not an LO-3
group.

We have also constructed examples of LO-3 groups with derived
length 3. The smallest of these groups has partial presentation (11),
with the definition of u, v, w and z as commutators as indicated and
the added relations u15 = 1, [u, v] = 1 and [[u, z], u] = [[u, z], v] =
[[u, z], w] = [[u, z], z] = 1. This group G has order 492075 = 39 · 52

and |G′′| = 27. Changing u15 = 1 to u33 = 1 results in a group of
order 2381643 = 39 · 112 and |G′′| = 27. These groups are extensions of
metabelian LO-3 groups. Unfortunately, none of these examples shed
any light on Conjecture 1.

Let’s finish this discussion with some comments about metabelian
quotients of Γ(3, 3, 3n).

Definition 3. Let ∆(3, 3, 3n) = Γ(3, 3, 3n)/Γ(3, 3, 3n)′′. Let Gn(m) be
the group ∆(3, 3, 3n)/N where N is the normal closure of the subgroup
〈([y−1, x−1])m〉 = 〈um〉 in ∆(3, 3, 3n).

This definition mirrors Definition 2. By Lemma 2, if n divides m,
then |Gn(m)| = 9n2m2. The calculation of the center Z(Gn(m)) needs
to be redone. Some Magma calculations suggest the following conjec-
ture.

Conjecture 2. Consider the group Gn(m) for n dividing m.
(1) if 3 does not divide m, then Z(Gn(m)) is trivial,
(2) if 3 divides m and 3 does not divide n, then Z(Gn(m)) ∼= Z3,

and
(3) if 3 divides n, then Z(G(3n)) ∼= Z3 × Z3.

Likewise, the normal subgroup calculations need to be redone. How-
ever, we expect an analog of Theorem 13 to be true.

Thanks are due the referee for several helpful suggestions, especially
the insightful remarks that resulted in Section 3 and Theorem 2. Fi-
nally, we would also like to thank our colleague Angel Kumchev for his
help with the number theoretic results.
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