
THE STRONG SYMMETRIC GENUS SPECTRUM OF ABELIAN GROUPS

ANGEL KUMCHEV, COY L. MAY, AND JAY ZIMMERMAN

Abstract. Let S denote the set of positive integers that may appear as the strong symmetric
genus of a finite abelian group. We obtain a set of (simple) necessary and sufficient conditions for
an integer g to belong to S. We also prove that the set S has an asymptotic density and estimate
its value.

1. Introduction

Let G be a finite group. Among the various genus parameters associated with G, the most
classical is perhaps the strong symmetric genus σ0(G), the minimum genus of any Riemann surface
on which G acts faithfully and preserving orientation. Work on this parameter dates back over a
century and includes the fundamental bound σ0(G) ≤ 84(g − 1) due to Hurwitz [4].

A natural problem is to determine the positive integers that occur as the strong symmetric
genus of a group (or a particular type of group), that is, to determine the strong symmetric genus
spectrum for the particular type of group. This basic problem was settled for the family of all finite
groups by May and Zimmerman [6]: there is a group of strong symmetric genus g, for all g ∈ N.
Our focus here is to describe the strong symmetric genus spectrum of abelian groups.

Let
S =

{
g ∈ N : g = σ0(A) for some abelian group A

}
denote the strong symmetric genus spectrum of abelian groups. Henceforth, we will refer to S
simply as the “spectrum.” The abelian groups of strong symmetric genus zero are exactly the
cyclic groups, and those of strong symmetric genus one are exactly the abelian groups of rank 2
and Z2×Z2×Z2. These facts are a direct consequence of the classification of the groups of strong
symmetric genus zero or one (see Gross and Tucker [2, §6.3]). One can find the strong symmetric
genus of any other abelian group by applying a classical result due to Maclachlan [5, Theorem 4].
Recall that every finite abelian group A has a canonical representation A ∼= Zm1×Zm2×· · ·×Zmr ,
with standard invariants m1,m2, . . . ,mr subject to m1 > 1 and mi|mi+1 for 1 ≤ i < r. If we
extend the list of standard invariants by adding m0 = 1 to it, we can state Machlachlan’s theorem
as follows.

Theorem M (Maclachlan, 1965). Let A be a finite abelian group, with |A| ≥ 10, and let m0 =
1,m1, . . . ,mr, r ≥ 3, denote the standard invariants of A. Then

(1) σ0(A) = 1 +
|A|
2

min
0≤γ≤r/2

{
2γ − 2 +

r−2γ∑
i=1

(
1− 1

mi

)
+

(
1− 1

mr−2γ

)}
.

When a > 1 and a3n ≥ 10, Maclachlan’s formula yields

(2) σ0(Za × Za × Zan) = 1− a2 + a2(a− 1)n.

In particular, when a = 2, this reveals that S contains the entire residue class g ≡ 1 (mod 4). It is
also not difficult to deduce from (1) that σ0(A)− 1 cannot be a squarefree integer.

Theorem 1. If g ≥ 2 and g − 1 is squarefree, then g /∈ S.
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Our first objective is to take such observations a step further and to provide a relatively simple
test that can be used to check whether a given positive integer g belongs to the spectrum S. In §2,
we establish the following result.

Theorem 2. Let g ≥ 2. Then g ∈ S if and only if g satisfies one of the following conditions:

(i) g ≡ 1 (mod 4) or g ≡ 55 (mod 81);
(ii) g − 1 is divisible by p4 for some odd prime p;

(iii) g − 1 is divisible by a2 for some odd integer a such that (a− 1) | g;
(iv) g − 1 is divisible by b2a2(a− 1) for some odd integers a, b > 1, with a ≡ 3 (mod 4).

We remark that each of conditions (ii)–(iv) can be checked easily given the prime factorization
of the integer g− 1. Therefore, the above theorem does provide a reasonable test to check whether
a specific integer g is in the spectrum. As part of the proof of Theorem 2 we also establish the
following result, which of independent interest.

Theorem 3. Suppose that A is an abelian group of rank 5 or higher. Then there exists an abelian
group B of rank 3 or 4 such that σ0(A) = σ0(B).

If A is a set of integers, its lower and upper asymptotic densities, denoted δ(A) and δ(A), are
given by

δ(A) = lim inf
X→∞

X−1A(X) and δ(A) = lim sup
X→∞

X−1A(X),

where A(X) = |A ∩ [1, X]|. A set A is said to have an asymptotic density, if δ(A) = δ(A); when A
does have an asymptotic density, it is denoted δ(A). Since the set of squarefree integers is known
to have an asymptotic density of 6π−2 ≈ 0.6079 (see Montgomery and Vaughan [8, Theorem 2.2]),
we find as a direct corollary of Theorem 1 that δ(S) ≤ 0.3921. On the other hand, since all the
integers g ≡ 1 (mod 4) are in the spectrum, we have δ(S) ≥ 0.25. It is therefore natural to ask
whether the spectrum S has an asymptotic density—which is not obvious—and what its potential
value is. The second main result of the paper establishes that the asymptotic density does indeed
exist.

Theorem 4. The spectrum S has an asymptotic density δ(S) ≈ 0.3284.

We remark that this shows that the lower bound δ(S) ≥ 0.3175... given by Borror, Morris and
Tarr [1] is quite tight.

2. The structure of S

Recall that abelian groups of ranks one or two have strong symmetric genus zero or one, re-
spectively. Henceforth, we focus on groups of ranks three and higher. Throughout this section, we
assume the notation of Theorem M. In particular, for an abelian group A of rank r ≥ 3, we write
m1,m2, . . . ,mr for its standard invariants and assume that mi | mi+1.

2.1. Proof of Theorem 1. Let A be an abelian group of rank r ≥ 3, with σ0(A) = g ≥ 2. The
main idea behind Theorem 1 is the observation that if a prime p divides m1, the smallest invariant
of A, then (1) forces p2 to divide g − 1. However, while this observation can be fully justified, we
opt for brevity and deduce the theorem from the following general result on actions of p-groups by
May and Zimmerman [7, Theorem 3].

Lemma 1. Let p be a prime number, and let G be a non-cyclic p-group that acts on a Riemann
surface of genus g ≥ 2 preserving orientation. Suppose that a largest cyclic subgroup of G has index
pt.

(i) If p is odd, then g ≡ 1 (mod pt).
(ii) If p = 2 and t > 1, then g ≡ 1 (mod 2t−1).
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Let X be a Riemann surface of genus g such that A acts on X preserving orientation. Then
any subgroup of A also acts on X. In particular, this is true for its Sylow p-subgroup Ap, where p
is any odd prime that divides m1. Since the largest cyclic subgroup of Ap has index pt, t ≥ 2, it
immediately follows from Lemma 1(i) that g ≡ 1 (mod p2).

When m1 = 2k, k ≥ 1, we may apply the above argument to the Sylow 2-subgroup of A. If 2t,
t ≥ 2, is the index of its largest cyclic subgroup, Lemma 1(ii) yields g ≡ 1 (mod 4), provided that
t ≥ 3. That leaves the case when t = 2. In this case, we must have r = 3, m1 = 2, m2 = 2a, and
m3 = 2an, with a odd. Thus, Maclachlan’s formula (1) gives

g = 1 + 4amin
{
1
2(3a− 1)n− 1, an

}
≡ 1 (mod 4),

since 1
2(3a− 1) is an integer. This completes the proof of Theorem 1.

2.2. Proof of Theorem 2. To begin, recall that all integers g ≡ 1 (mod 4) are part of the
spectrum S, by (2) with a = 2. Similarly to (2), Maclachlan’s theorem gives also

(3) σ0(Z3 × Z3 × Z3 × Z3n) = 81n− 26,

so the congruence class g ≡ 55 (mod 81) is also part of S.
Further, by (2), the spectrum S contains any natural number g satisfying a congruence of the

form

g ≡ 1− a2 (mod a2(a− 1))

for some odd a > 1. These are exactly the integers described by condition (iii) of Theorem 2,
since we may apply the Chinese Remainder Theorem to rewrite the above congruence as the pair
of congruences

g ≡ 1 (mod a2), g ≡ 0 (mod a− 1).

2.2.1. The spectrum of groups of rank 3. In this section, we study genera of abelian groups of rank
3 and establish the following result.

Proposition 1. The spectrum of abelian groups of rank 3 consists of the congruence class g ≡ 1
(mod 4) and the integers g satisfying conditions (iii) or (iv) of Theorem 2.

As we noted already, the spectrum of the groups of type Z2×Z2×Z2n is the residue class g ≡ 1
(mod 4), and the spectrum of the groups of type Za × Za × Zan, with a odd, are the integers g
satisfying condition (iii) of Theorem 2. We also observe, for future reference, that when a > 1 is
odd, (1) gives

(4) σ0(Za × Z2a × Z2a) = σ0(Za × Za × Z4a) = 1− 5a2 + 4a3.

Thus, the spectrum of groups of type Za×Z2a×Z2a is contained in the integers satisfying condition
(iii) of Theorem 2.

Next, we consider a general abelian group of rank 3 and write its canonical form as Za×Zab×Zabn,
where a, b, n are positive integers with a > 1. Our first order of business is to show that the total
contribution to the spectrum of such groups with even a is the congruence class g ≡ 1 (mod 4).
The next lemma establishes that and a little more.

Lemma 2. Let A be a finite abelian group. If the Sylow 2-subgroup of A has rank 3 or higher, then
σ0(A) ≡ 1 (mod 4).

Proof. The proof is similar to the proof of Theorem 1. Let A act on a Riemann surface X of genus
g = σ0(A) ≥ 2 preserving orientation, and assume that its Sylow 2-subgroup A2 has rank at least
3. Let 2t, t ≥ 2, be the index of a largest cyclic subgroup of A2. Since A2 acts on X as well, we
can apply Lemma 1(ii) to get g ≡ 1 (mod 2t−1). When t ≥ 3, this establishes the lemma.
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When t = 2, we must have rank(A2) = 3. Further, the invariants m1, . . . ,mr−3 are all odd and
mr−2, mr−1, mr are even, but mr−1 and mr−2 are not divisible by 4. By Theorem M, there exists
an integer γ ≥ 0 such that

(5) σ0(A) = 1 +
1

2

{
2(γ − 1)n+

r−2γ∑
i=1

(n− ni) + (n− nr−2γ)

}
,

where n = |A| = m1 · · ·mr and ni = n/mi. We note that n, n1, . . . , nr−3 are divisible by 8. Hence,
the expression in the braces on the right side of (5) reduces modulo 8 to one of the following:

0, −2nr−2, −nr−2 − nr−1 − 2nr.

Since all three of nr−2, nr−1 and nr are divisible by 4 and nr−1 and nr−2 are divisible by the same
power of 2, we have

2nr−2 ≡ nr−2 + nr−1 + 2nr ≡ 0 (mod 8),

and the lemma follows from (5). �

In view of Lemma 2 and (4), we may now focus on groups of type Za ×Zab ×Zabn, with an odd
a > 1, b > 1, and bn > 2. The next lemma describes the spectrum of such groups.

Lemma 3. Let A ∼= Za × Zab × Zabn, a > 1, be an abelian group of rank 3 in canonical form. If a
is odd, b > 1, and bn > 2, then either σ0(A) ≡ 1 (mod 4), or σ0(A) = 1 + b2a2(a− 1)n, with b odd
and a ≡ 3 (mod 4). In particular, the spectrum of such groups contains the integers g satisfying
condition (iv) of Theorem 2.

Proof. By Theorem M,

(6) σ0(A) = 1 + a3b2nmin

{
1− 1

2a
− 1

2ab
− 1

abn
, 1− 1

a

}
.

Under the hypotheses b > 1 and bn > 2, we have

1

2ab
+

1

abn
≤ min

{
1

4a
+

1

4a
,

1

6a
+

1

3a

}
=

1

2a
.

Therefore, (6) yields σ0(A) = 1 + b2a2(a− 1)n. Finally, when b is even or a ≡ 1 (mod 4), we have
σ0(A) ≡ 1 (mod 4). �

We can now summarize our findings about the spectrum of abelian groups of rank 3 as follows:

• The spectrum of groups with an even a is the congruence class g ≡ 1 (mod 4).
• The spectrum of groups with an odd a and b = 1 consists of the even integers g satisfying

condition (iii) of Theorem 2.
• The spectrum of groups with an odd a and b > 1, where either a ≡ 1 (mod 4) or b is even,

is contained in the congruence class g ≡ 1 (mod 4).
• The spectrum of groups with a ≡ 3 (mod 4) and an odd b > 1 consists of the odd integers
g satisfying condition (iv) of Theorem 2.

Altogether, these observations establish Proposition 1.

We conclude this section with a useful consequence of the above discussion.

Corollary 1. The spectrum of abelian groups of rank 3 contains the residue class g ≡ 1 (mod 81).

Proof. By Lemma 3, the integers g ≡ 1 (mod 162) are the spectrum of the groups Z3 × Z9 × Z9n,
while the integers g ≡ 82 (mod 162) are part of the spectrum g ≡ 10 (mod 18) of the groups
Z3 × Z3 × Z3n. �
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2.2.2. The spectrum of groups of rank 4. Now we consider abelian groups A of rank 4, writing their
canonical form as Za × Zab × Zabc × Zabcn, with a > 1. Since we are interested in groups with
σ0(A) 6≡ 1 (mod 4), we may assume, by virtue of Lemma 2, that ab is odd. The main result of this
section is the following proposition.

Proposition 2. The spectrum of abelian groups of rank 4 is a subset of the integers satisfying
conditions (i) or (ii) of Theorem 2. Moreover, the spectrum of abelian groups of ranks 3 or 4
contains all the integers satisfying condition (ii) of Theorem 2.

Proof. Let A ∼= Za × Zab × Zabc × Zabcn, with a > 1 and ab odd. By Theorem M,

σ0(A) = 1 + |A|min

{
1,

3

2
− 1

2a
− 1

ab
,
3

2
− 1

2a
− 1

2ab
− 1

2abc
− 1

abcn

}
.

The assumption a ≥ 3 leads to

3

2
− 1

2a
− 1

ab
≥ 3

2
− 1

6
− 1

3
= 1.

Similarly, if a ≥ 5, or bc ≥ 3, or c = 2 and n ≥ 2, we have

3

2
− 1

2a
− 1

2ab
− 1

2abc
− 1

abcn
≥ 1.

Thus, we have σ0(A) = 1 + |A| for all abelian groups of rank 4 with ab odd, with the exception
of the groups isomorphic to Z3 × Z3 × Z3 × Z3n or Z3 × Z3 × Z6 × Z6. By (3), the spectrum of
the former family is the congruence class g ≡ 55 (mod 81). This congruence class includes also the
genus of Z3 × Z3 × Z6 × Z6, since

σ0(Z3 × Z3 × Z6 × Z6) = 298 ≡ 55 (mod 81).

Consequently, when σ0(A) does not satisfy condition (i) of Theorem 2, we must have σ0(A) = 1+|A|.
Since |A| is divisible by p4 for any (necessarily odd) prime divisor p of a, this establishes the first
part of the proposition.

When g = 1 + p4n for a prime p ≥ 5, we have

g = σ0(Zp × Zp × Zp × Zpn),

and g ∈ S. Together with Corollary 1, this proves the second part of the result. �

2.2.3. Groups of higher ranks. In the last two sections, we demonstrated that the combined spec-
trum of abelian groups of ranks 3 and 4 consists exactly of the integers g satisfying one of the four
conditions of Theorem 2. To complete the proof of Theorem 2, we now establish Theorem 3 which
states that groups of ranks 5 and higher contribute nothing more to S.

Proof of Theorem 3. When σ0(A) ≡ 1 (mod 4), we may choose B of the form Z2×Z2×Z2n. When
σ0(A) 6≡ 1 (mod 4), it follows from Lemma 2 that m1, the smallest invariant of A, must be odd.
Let p be an odd prime dividing m1, and let Ap be the Sylow p-subgroup of A. Then p divides
each invariant mi, and a largest cyclic subgroup of Ap has index pt, with t ≥ 4. As in the proof
of Theorem 1, we may apply Lemma 1 to Ap to conclude that σ0(A) ≡ 1 (mod p4). Thus, by
Proposition 2, there exists an abelian group B of rank 3 or 4 such that σ0(B) = σ0(A). �

3. The asymptotic density of S

In this section, we establish Theorem 4. Our proof uses the characterization of S given in
Theorem 2. Let Sj , 1 ≤ j ≤ 4, denote the set of integers that satisfy the jth condition of Theorem
2 but none of the previous conditions (if any). We deal with each of these four sets separately and
show that each Sj has an asymptotic density.
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Densities of residue classes play a major role in our proofs, so we begin by recalling that the
residue class x ≡ a (mod q) has asymptotic density 1/q. Also, by the Chinese Remainder Theorem,
the density of the intersection of two residue classes x ≡ ai (mod qi), i = 1, 2, has density{

[q1, q2]
−1 if (q1, q2) | (a1 − a2),

0 otherwise.

Here and in the sequel, for integers a, b, . . . , we use (a, b, . . . ) and [a, b, . . . ] as abbreviations for
lcm[a, b, . . . ] and gcd(a, b, . . . ), respectively. In particular, using the inclusion-exclusion principle,
we see that the density of S1, the set of integers g satisfying condition (i) of Theorem 2, is

(7) δ1 =
1

4
+

1

81
− 1

324
=

7

27
.

3.1. The density of S2. We split S2 into subsets S2,j , 2 ≤ j ≤ 4, subject to g ≡ j (mod 4). We
will prove that each of these sets has asymptotic density

(8) δ(S2,j) =
1

4

(
80

81
− 79

75ζ(4)

)
,

where ζ(s) denotes the Riemann zeta-function. Thus,

(9) δ2 = δ(S2) =
4∑
j=2

δ(S2,j) =
20

27
− 79

100ζ(4)
≈ .0108.

The calculation of the density (8) uses some basic facts about the distribution of biquadrate-free
integers. When k ≥ 2, let αk(n) denote the characteristic function of the integers n that are not
divisible by pk for any prime p. It is well-known (and not difficult to prove) that

(10) αk(n) =
∑
dk|n

µ(d),

where µ(d) is the Möbius function and the summation is over all kth powers that divide n. One
needs little more than (10) to establish the next lemma. The reader can find the details in a short
paper by Prachar [9], where he establishes this result with a sharper error term.

Lemma 4. Let (a, q) = 1. Then for any fixed ε > 0, one has∑
n≤X

n≡a (mod q)

αk(n) =
X

qζ(k)

∏
p|q

(
1− p−k

)−1
+O

(
X1/k+ε

)
,

the implied constant in the O-term depending on q and ε.

Let Tj(X) denote the number of integers g ≡ j (mod 4), with g ≤ X, that satisfy condition (ii)
of Theorem 2. When j = 2 or 4, we have

Tj(X) =
X

4
−

∑
h≤X

h≡j−1 (mod 4)

α4(h) +O(1),

and Lemma 4 yields

(11) Tj(X) =
X

4

(
1− 16

15ζ(4)

)
+O

(
X1/3

)
.
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When j = 3, we write g = 2h+ 1 to get

T3(X) =
X

4
−

∑
h≤X/2

h≡1 (mod 2)

α4(h) +O(1),

and Lemma 4 again leads to (11).
Next, let T ′j(X) denote the number of integers g counted by Tj(X) that satisfy also the congruence

g ≡ 55 (mod 81). A variant of the above argument yields

(12) T ′j(X) =
X

324

(
1− 27

25ζ(4)

)
+O

(
X1/3

)
.

The desired result (8) follows from (11) and (12), upon noting that the counting function S2,j(X)
of S2,j can be represented as

S2,j(X) = Tj(X)− T ′j(X).

3.2. The density of S3. Recall that condition (iii) is equivalent to the requirement that g satisfies
the congruence

(13) g ≡ 1− a2 (mod a2(a− 1))

for some odd a > 1. Let A be the set of such g, and write A(X) = A ∩ [1, X].
Let S′3(X) denote the counting function of the integers g that satisfy (13) but fail condition (ii)

of Theorem 2. Note together these requirements restrict a to squarefree values. By (10),

S′3(X) =
∑

g∈A(X)

α4(g − 1) +O(1) =
∑

g∈A(X)

∑
d4|(g−1)

µ(d) +O(1)

=
∑

d≤X1/4

µ(d)
∑

g∈A(X)
d4|(g−1)

1 +O(1).

Let D be a large integer. On noting that∑
d>D

∑
g∈A(X)
d4|(g−1)

1 ≤
∑
d>D

X

d4
≤ XD−3,

we deduce that

(14) S′3(X) =
D∑
d=1

µ(d)
∑

g∈A(X)
d4|(g−1)

1 +O
(
XD−3

)
.

To estimate the sum on the right side of (14), we first observe that the contribution from residue
classes (13) with a > A is bounded above by∑

d≤D

∑
a>A

X

a2(a− 1)
= O

(
XDA−2

)
.

Upon choosing A = D2, we deduce that

(15) S′3(X) =

D∑
d=1

µ(d)

A∑
a=3

∑
g∈Aa(X)
d4|(g−1)

1 +O
(
XD−3

)
,
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where Aa(X) is the subset of A(X) containing the integers g that satisfy (13) but

g 6≡ 1− b2 (mod b2(b− 1))

for any odd b with 1 < b < a. We now call a set of squarefree integers {a1, a2, . . . , ak} d-admissible
if ai > 1 for all i and

(16) (ai, aj − 1) = (ai − 1, d) = 1 for all i, j ∈ {1, 2, . . . , k}.

The d-admissibility of a set {a1, a2, . . . , ak} means that the congruences (13) with a = ai, 1 ≤ i ≤ k,
are consistent with one another and also with the condition d4 | (g − 1). In particular, if {a} is
d-admissible (i.e., if (a− 1, d) = 1), the set Aa has density δ(d, a), given by

δ(d, a) =
1

[d4, f(a)]
−
∑′

b<a

1

[d4, f(a), f(b)]
+

∑′

b2<b1<a

1

[d4, f(a), f(b1), f(b2)]
− · · · ,

where f(x) = x2(x − 1) and the summations are over odd integers b, b1, b2, . . . such that the sets
{a, b}, {a, b1, b2}, . . . are d-admissible. The same application of the inclusion-exclusion principle
that leads to the last formula also lets us rewrite (15) as

S′3(X) = X

D∑
d=1

µ(d)

A∑′

a=3

δ(d, a) +O
(
D2A +XD−3

)
.

Hence, if we choose D = b
√

lnXc (and keep A = D2), we obtain

S′3(X) = X
D∑
d=1

µ(d)

A∑′

a=3

δ(d, a) +O
(
XD−3

)
.

Recalling that a above is restricted to odd values, we conclude that

(17) lim
X→∞

X−1S′3(X) =
∞∑
d=1

(d,2)=1

µ(d)

∞∑′

a=3
(a,2)=1

δ(d, a).

Let S′′3 (X) be the part of S′3(X) that counts integers g subject to g ≡ 55 (mod 81). We can
estimate S′′3 (X) using a variant of the above argument. It is not difficult to see that the conditions

d4 | (g − 1), g ≡ 55 (mod 81), g ≡ 1− a2i (mod a2i (ai − 1)) (1 ≤ i ≤ k),

are consistent if and only if (d, 6) = 1, the moduli a1, a2, . . . , ak satisfy (16) with 3d in place of d,
and none of the ai’s is divisible by 9. However, since we are only interested in squarefree ai’s, the
latter condition is superfluous. Thus, the argument leading to (17) also gives

(18) lim
X→∞

X−1S′′3 (X) =
∞∑
d=1

(d,6)=1

µ(d)

∞∑′

a=3
(a,2)=1

δ(3d, a).

Finally, we note that the difference S′3(X)−S′′3 (X) is exactly the counting function of S3. Hence,
by (17) and (18), the set S3 has density

δ3 =

∞∑
d=1

(d,2)=1

µ(d)

∞∑′

a=3
(a,2)=1

δ(d, a)−
∞∑
d=1

(d,6)=1

µ(d)

∞∑′

a=3
(a,2)=1

δ(3d, a).

A simple calculation on a personal computer leads to the approximation δ3 ≈ .0564.
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3.3. The density of S4. The integers g that satisfy condition (iv) of Theorem 2 never satisfy
condition (iii), for parity reasons, so we only need to exclude those g that satisfy conditions (i) or
(ii). Consequently, the calculation of δ(S4) is very similar to that we just went through to calculate
δ3. Let B be the set of biquadrate-free values that the polynomial f(a, b) = b2a2(a− 1) takes when
a ≡ 3 (mod 4) and b > 1 is odd. Note that this restricts a and b to be squarefree and relatively
prime. We reduce the calculation of the density of S4 to estimates for the distribution of sets of
multiples of B in residue classes. The next lemma is a slight generalization of a classical result on
the density of a set of multiples.

Lemma 5. Let B = {b1, b2, . . . } be a set of positive integers such that
∑

k b
−1
k <∞, and let a, q be

positive integers. Then the set

M(B; q, a) =
{
n ∈ N : n ≡ a (mod q), n is divisible by some b ∈ B

}
has an asymptotic density given by

∞∑
k=1

(
ε(q, a; bk)

[q, bk]
−
∑

1≤j<k

ε(q, a; bk, bj)

[q, bk, bj ]
+

∑
1≤i<j<k

ε(q, a; bk, bj , bi)

[q, bk, bj , bi]
− · · ·

)
,

where ε(q, a; bk, bj , . . . ) is the indicator function of the condition gcd(q, [bk, bj , . . . ]) | a.

Proof. The case q = 1 is Theorem 9 in Halberstam and Roth [3, Ch. V], whose proof uses the
inclusion-exclusion principle to count the elements of the union of the residue classes x ≡ 0
(mod bk). When q > 1, we use the Chinese Remainder Theorem to replace the latter union
with the union of residue classes modulo [q, bk], defined by the conditions

x ≡ 0 (mod bk), x ≡ a (mod q),

when those conditions are consistent (i.e., when ε(q, a; bk) = 1). We then follow the argument of
Halberstam and Roth. �

We remark that the set B defined at the beginning of the section satisfies the hypothesis of
Lemma 5. Indeed, if we denote the elements of B by b1, b2, . . . , we have

∞∑
k=1

1

bk
<
∞∑
a=3

∞∑
b=3

1

b2a2(a− 1)
<∞.

We may therefore apply Lemma 5 to sets M(B; q, a) for various choices of q and a.
We have S4 = S ′4 \ S ′′4 , where

S ′4 =
{
h+ 1 : h ∈M(B; 4, 2), h biquadrate-free

}
,

S ′′4 =
{
h+ 1 : h ∈M(B; 324, 54), h biquadrate-free

}
.

Let S′4(X) and S′′4 (X) denote the counting functions of these two sets. Similarly to (14), we have

S′4(X) =
∑
d≤D

gcd(d,2)=1

µ(d)
∑
h≤X

h∈M(B;4d4,2d4)

1 +O
(
XD−3

)
,

where D is a large integer. When X is sufficiently large in terms of D, we may use Lemma 5 to get

S′4(X) = X
∑
d≤D

gcd(d,2)=1

µ(d)β(d) +O
(
XD−3

)
,

where

β(d) =

∞∑
k=1

(
ε(4d4, 2d4; bk)

[4d4, bk]
−
∑

1≤j<k

ε(4d4, 2d4; bk, bj)

[4d4, bk, bj ]
+ · · ·

)
.
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Since B is contained in the residue class x ≡ 2 (mod 4) and d4 ≡ 1 (mod 16), we have

ε(4d4, 2d4; bk, bj , . . . )

[4d4, bk, bj , . . . ]
=

1

2[d4, bk, bj , . . . ]
,

whence

β(d) =
1

2

∞∑
k=1

(
1

[d4, bk]
−
∑

1≤j<k

1

[d4, bk, bj ]
+ · · ·

)
.

By letting X →∞ and then D →∞, we conclude that

δ(S ′4) =
1

2

∞∑
d=1

gcd(d,2)=1

µ(d)
∞∑
k=1

(
1

[d4, bk]
−
∑

1≤j<k

1

[d4, bk, bj ]
+ · · ·

)
.

A similar argument can be applied to S ′′4 to show that

δ(S ′′4 ) =
1

2

∞∑
d=1

gcd(d,6)=1

µ(d)
∞∑
k=1

(
ε(81, 27; bk)

[81d4, bk]
−
∑

1≤j<k

ε(81, 27; bk, bj)

[81d4, bk, bj ]
+ · · ·

)
.

Note that ε(81, 27; bk, bj) is 0 or 1 according as 81 divides some or none of the integers bk, bj , . . . .
Recalling that the elements of B are biquadrate-free, we deduce that

δ(S ′′4 ) =
1

2

∞∑
d=1

gcd(d,6)=1

µ(d)

∞∑
k=1

(
1

[81d4, bk]
−
∑

1≤j<k

1

[81d4, bk, bj ]
+ · · ·

)
.

We conclude that the density of S4 is

δ4 = δ(S ′4)− δ(S ′′4 ).

Again, a computer calculation yields a numerical value of δ4 ≈ .0019. This concludes the proof of
Theorem 4.
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