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Definitions

Let G be a finite group.

The strong symmetric genus σ0(G) is the minimum
genus of any Riemann surface on which G acts
preserving orientation.

The symmetric genus σ(G) is the minimum genus of
any Riemann surface on which G acts, possibly
reversing orientation.
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A Natural Question

A well-known classical result of Hurwitz (1893) states
that |G| ≤ 84(g −1) for genus g, where g > 2.

A natural problem is to determine the positive integers
that occur as the (strong) symmetric genus of a group
(or a particular type of group). This set is called the
(strong) symmetric genus spectrum.

May & Zimmerman, 2003. There is a group of strong
symmetric genus n for each value of the integer n.

It is not known whether there is a group of symmetric
genus n for each value of the integer n.
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Upper and Lower Density

Let I be a set of positive integers. For an integer X, let
[1,X ] be the set of integers between 1 and X and define
I(X) = |I ∩ [1,X ]|.

If I is a set of integers, its lower and upper asymptotic
densities, denoted δ(I) and δ(I), are given by

δ(I) = liminf
X→∞

I(X)

X

and

δ(I) = limsup
X→∞

I(X)

X
.
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Density in the Integers

A set I is said to have an asymptotic density, if
δ(I) = δ(I); when I does have an asymptotic density, it
is denoted δ(I).

Now let S be the set of all positive integers that are the
strong symmetric genus of some finite group G. It
follows that δ(S) = 1.

Clearly the 2003 result of May and Zimmerman is
considerably stronger than the above density
statement.
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Density of the Abelian Spectrum

Next let SA be the set of all positive integers that are the
strong symmetric genus of some finite abelian group G.

We will show that δ(SA) exists and that it is
approximately .3284.

We will also give necessary and sufficient conditions for
a positive integer g to be the strong symmetric genus of
an abelian group.
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Formulas I

Recall that every finite abelian group G has a canonical
representation G ∼= Zm1 ×Zm2 ×·· ·×Zmr , with standard
invariants m1,m2, . . . ,mr subject to m1 > 1 and mi|mi+1

for 1 ≤ i < r.

Maclachlan (1965) proved that if G is an abelian group
of rank r ≥ 3, with |G| ≥ 10, then

σ0(G) = 1+ |G|
2

min
0≤γ≤r/2

{
2γ−2+

r−2γ∑
i=1

(
1− 1

mi

)
+

(
1− 1

mr−2γ

)}
.

(1)
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Formulas II

For example, when a > 1 and a3n ≥ 10, Maclachlan’s
formula yields

σ0(Za ×Za ×Zan) = 1−a2 +a2(a−1)n.

In particular, when a = 2, this reveals that SA contains
the entire residue class g ≡ 1 (mod 4).

Also when a is odd, g ≡ 1−a2 (mod a2(a−1)) and this
is equivalent to g −1 is divisible by a2 for some odd
integer a with (a−1)|g by the Chinese Remainder
Theorem.
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Formulas III

When b ≥ 2 and bn > 2, Maclachlan’s formula gives

σ0(Za ×Zab ×Zabn) = 1+b2a2(a−1)n. (2)

In all cases, except when a and b are odd, with a ≡ 3
(mod 4), g ≡ 1 (mod 4).

Proposition

The spectrum of abelian groups of rank 3 consists of the
congruence class g ≡ 1 (mod 4) and the integers g
satisfying conditions (iii) or (iv) of the Theorem below.
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Main Theorem

Main Theorem
Let g ≥ 2. Then g ∈ SA if and only if g satisfies one of the
following conditions:

(i) g ≡ 1 (mod 4) or g ≡ 55 (mod 81);

(ii) g −1 is divisible by p4 for some odd prime p;

(iii) g −1 is divisible by a2 for some odd integer a with
(a−1) | g;

(iv) g −1 is divisible by b2a2(a−1) for some odd integers
a,b > 1, with a ≡ 3 (mod 4).
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Rank Four Abelian Groups

Proposition

The spectrum of abelian groups of rank 4 is a subset of
the integers satisfying conditions (i) or (ii) of the Main
Theorem. Moreover, the spectrum of abelian groups of
ranks 3 or 4 contains all the integers satisfying condition
(ii) of the Main Theorem.

Proof: Notice that for an abelian group to have rank 4,
it must have a subgroup isomorphic to Z4

p for some
prime p.
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Rank Four Abelian Groups Proof

If p = 2, then g ≡ 1 (mod 4). So we may assume that the
abelian group has a subgroup isomorphic to Z4

a for
some odd integer a.

When a ≥ 5, then σ0(A) = 1+|A| for the rank 4 abelian
group A. For a = 3, then σ0(A) = 1+|A| or σ0(A) ≡ 1
(mod 4) for all except a few cases.

For the exceptional cases with a = 3, σ0(A) ≡ 55
(mod 81).

Conversely, all numbers g of the form 1+p4n are the
genus of groups of rank 3 or 4.
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High Rank Abelian Groups

Let A be an abelian group of rank n ≥ 5. So A has a
subgroup isomorphic to Zn

a . If a is even, then σ0(A) ≡ 1
(mod 4) and σ0(A) =σ0(Z2 ×Z2 ×Z2n) for some n.

If a is odd, then there is a rank four group B satisfying
|A| = |B| and so σ0(A) =σ0(B).

Therefore, the genus spectrum is given by looking at
the strong symmetric genus of groups of rank 3 or rank
4.
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Number Theory

Let Sj denote those g ∈ SA that satisfy the jth condition
of the theorem but none of the earlier conditions. Let
δj be the density of this set.

For example, by the inclusion-exclusion principle, the
density of S1 (i.e., the union of the congruence classes
g ≡ 1 (mod 4) and g ≡ 55 (mod 81)) is

δ1 = 1

4
+ 1

81
− 1

324
= 7

27
.
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Number Theory

Let α4(n) denote the characteristic function of the
integers n such that p4 - n for any prime p.

It is known that if gcd(a,q) = 1, then∑
n≤X

n≡a (mod q)

α4(n) = CqX +O(X 1/3).
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Number Theory

We use this to show that the number T(X) of integers
g ∈ S2 with g ≡ 2 (mod 4) and g ≤ X is

T(X) = X

4
− ∑

h≤X
h≡1 (mod 4)

α4(h) = X

4

(
1− 16

15ζ(4)

)
+O(X 1/3).

Using a similar argument where g ≡ 55 (mod 81), we
calculate the intersection with S1, and subtract it.

This gives the density of S2 is

δ2 = 20

27
− 79

100ζ(4)
≈ 0.0108.
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Number Theory

S3 can be described as the set A of integers g such that

g ≡ 1−a2 (mod a2(a−1)) (∗)

for some odd a > 1. The set S4 is similar.

We prove that δ3 ≈ 0.0564. and δ4 ≈ 0.0019.

Altogether, we have

δ(SA) = δ1 +·· ·+δ4 ≈ 0.3284.
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The Strong Symmetric Genus of
Nilpotent Groups

Let SN be the set of all positive integers that are the
strong symmetric genus of some finite nilpotent group
G.

Every finite abelian group is nilpotent and so SA ⊆ SN .

Clearly, all integers congruent to 1 (mod 4) are
contained in SN .

σo(Zn ×D4) = 2(n−1) for an odd integer n and so all
integers congruent to 0 (mod 4) are contained in SN .
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Other congruence classes

σo(Zn ×QD4) = 2(2n−1) for an odd integer n and so all
integers congruent to 2 (mod 8) are contained in SN .

σo(Zn ×Q) = 1+2n for an odd integer n and so all odd
integers are contained in SN .

Theorem
Let g ≥ 0. If g is not congruent to 6 (mod 8), then g ∈ SN .

Theorem
Let g ≥ 0 with g ≡ 6 (mod 8). If g −1 is prime, then
g ∉ SN .
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Proof of Theorem

Theorem
Let p be an odd prime, and let G be a nilpotent group of
genus σo(G) = 1+p. Then G is isomorphic to a direct
product O×S2, where O is an abelian group of odd order
that is either cyclic or Zp ×Zpk for some k and S2 is a
non-abelian 2-group with a cyclic subgroup of index 2.

Since there are four families of groups, that can be S2

and two possibilities for O, there are eight cases to
consider.
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Proof of Theorem

The cases, G = Zm ×S2 are not in the congruence class 6
(mod 8).

The cases, G = Zp ×Zpk ×S2 have σo(G) > 1+p and this
proves the Theorem.

We may add a few more congruence classes of abelian
groups and add an extra 1

72 .

Therefore, δ(SN ) ≥ 8
9 .
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Some Conclusions

We know that there are infinitely many gaps in 6
(mod 8). We do not know whether these gaps have
positive density. The following consequence of the
Chinese Remainder Theorem explains the problem.

Theorem
Let C be any congruence class. Then there exists a
congruence class B⊆C, all of whose integers are the
genus of an abelian group.

Corollary
There does not exist a congruence class consisting
entirely of gaps in SN .
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Symmetric Genus of Abelian Groups

Allowing orientation reversing actions changes the
genus parameter a lot. There is a formula for the
symmetric genus of abelian groups, but it is much
more complicated and contains an error in one of the
formulas.

May, C.L. and Zimmerman, J., The symmetric genus of
finite abelian groups, Illinois J. of Math., Vol. 37, No. 3,
Fall 1993, 400-423.
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Main Results

Theorem
The strong symmetric genus spectrum of abelian groups
and the symmetric genus spectrum of abelian groups are
identical.

This is a very surprising and unexpected result. We
thought that there would be significant overlap
between the two, but that they would be different.

Most of the differences hide in the 1 (mod 4) case.
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Main Results

We were able to show that for an abelian group A,
either σ(A) ≡ 1 (mod 4) or σ(A) =σo(A), unless the
Sylow 2-subgroup is isomorphic to Z2 ×Z2k for some
k ≥ 1.

If A has a Sylow 2-subgroup of rank 3 or higher then its
genus is congruent to 1 (mod 4) and we can cover that
case.

If A has cyclic Sylow 2-subgroup, then σ(A) =σo(A).
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Argument

Let A ∼= Zβ1 ×·· ·Z2βn−1 ×Z2kβn
, where all βi are odd. Next,

define A1
∼= Zβ1 ×·· ·Zβn−1 ×Z2k+1βn

.

So σ(A) = min{σo(A),σo(A1)}. Therefore, the symmetric
genus spectrum is contained in the strong symmetric
genus spectrum.

The reverse inclusion involves looking at the four cases
in the Theorem on SA in turn.

THE END
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