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Definitions

Let G be a finite group.

The strong symmetric genus σ0(G) is the minimum
genus of any Riemann surface on which G acts
preserving orientation.

The real genus ρ(G) is the minimum algebraic genus of
any compact bordered Klein surface on which G acts
faithfully.
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A Natural Question

A well-known classical result of Hurwitz (1893) states
that |G| ≤ 84(g −1) for genus g, where g > 2.

A natural problem is to determine the positive integers
that occur as the strong symmetric genus of a group (or
a particular type of group). This set is called the strong
symmetric genus spectrum.

May & Zimmerman, 2003. There is a group of strong
symmetric genus n for each value of the integer n.
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Upper and Lower Density

Let A be a set of positive integers. For an integer X, let
[1,X ] be the set of integers between 1 and X and define
A(X) = |A∩ [1,X ]|.

If A is a set of integers, its lower and upper asymptotic
densities, denoted δ(A) and δ(A), are given by

δ(A) = liminf
X→∞

A(X)

X

and

δ(A) = limsup
X→∞

A(X)

X
.
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Density in the Integers

A set A is said to have an asymptotic density, if
δ(A) = δ(A); when A does have an asymptotic density, it
is denoted δ(A).

Now let S be the set of all positive integers that are the
strong symmetric genus of some finite group G. It
follows that δ(S) = 1.

Clearly the 2003 result of May and Zimmerman is
considerably stronger than the above density
statement.
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Density of the Abelian Spectrum

Next let A be the set of all positive integers that are the
strong symmetric genus of some finite abelian group G.

We will show that δ(A) exists and that it is
approximately .3284.

We will also give necessary and sufficient conditions for
a positive integer g to be the strong symmetric genus of
an abelian group.
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Formulas I

Recall that every finite abelian group G has a canonical
representation G ∼= Zm1 ×Zm2 ×·· ·×Zmr , with standard
invariants m1,m2, . . . ,mr subject to m1 > 1 and mi|mi+1

for 1 ≤ i < r.

Maclachlan (1965) proved that if G is an abelian group
of rank r ≥ 3, with |G| ≥ 10, then

σ0(G) = 1+ |G|
2

min
0≤γ≤r/2

{
2γ−2+

r−2γ∑
i=1

(
1− 1

mi

)
+

(
1− 1

mr−2γ

)}
.

(1)
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Formulas II

For example, when a > 1 and a3n ≥ 10, Maclachlan’s
formula yields

σ0(Za ×Za ×Zan) = 1−a2 +a2(a−1)n.

In particular, when a = 2, this reveals that S contains
the entire residue class g ≡ 1 (mod 4).

Also when a is odd, g ≡ 1−a2 (mod a2(a−1)) and this
is equivalent to g −1 is divisible by a2 for some odd
integer a with (a−1)|g by the Chinese Remainder
Theorem.
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Formulas III

When b ≥ 2 and bn > 2, Maclachlan’s formula gives

σ0(Za ×Zab ×Zabn) = 1+b2a2(a−1)n. (2)

In all cases, except when a and b are odd, with a ≡ 3
(mod 4), g ≡ 1 (mod 4).

Proposition

The spectrum of abelian groups of rank 3 consists of the
congruence class g ≡ 1 (mod 4) and the integers g
satisfying conditions (iii) or (iv) of the Theorem below.
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Main Theorem

Main Theorem
Let g ≥ 2. Then g ∈ S if and only if g satisfies one of the
following conditions:

(i) g ≡ 1 (mod 4) or g ≡ 55 (mod 81);

(ii) g −1 is divisible by p4 for some odd prime p;

(iii) g −1 is divisible by a2 for some odd integer a with
(a−1) | g;

(iv) g −1 is divisible by b2a2(a−1) for some odd integers
a,b > 1, with a ≡ 3 (mod 4).
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Rank Four Abelian Groups

Proposition

The spectrum of abelian groups of rank 4 is a subset of
the integers satisfying conditions (i) or (ii) of the Main
Theorem. Moreover, the spectrum of abelian groups of
ranks 3 or 4 contains all the integers satisfying condition
(ii) of the Main Theorem.

Proof: Notice that for an abelian group to have rank 4,
it must have a subgroup isomorphic to Z4

p for some
prime p.
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Rank Four Abelian Groups Proof

If p = 2, then g ≡ 1 (mod 4). So we may assume that the
abelian group has a subgroup isomorphic to Z4

a for
some odd integer a.

When a ≥ 5, then σ0(A) = 1+|A| for the rank 4 abelian
group A. For a = 3, then σ0(A) = 1+|A| or σ0(A) ≡ 1
(mod 4) for all except a few cases.

For the exceptional cases with a = 3, σ0(A) ≡ 55
(mod 81).

Conversely, all numbers g of the form 1+p4n are the
genus of groups of rank 3 or 4.
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High Rank Abelian Groups

Let A be an abelian group of rank n ≥ 5. So A has a
subgroup isomorphic to Zn

a . If a is even, then σ0(A) ≡ 1
(mod 4) and σ0(A) =σ0(Z2 ×Z2 ×Z2n) for some n.

If a is odd, then there is a rank four group B satisfying
|A| = |B| and so σ0(A) =σ0(B).

Therefore, the genus spectrum is given by looking at
the strong symmetric genus of groups of rank 3 or rank
4.
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Number Theory

Let Sj denote those g ∈ S that satisfy the jth condition
of the theorem but none of the earlier conditions. Let
δj be the density of this set.

For example, by the inclusion-exclusion principle, the
density of S1 (i.e., the union of the congruence classes
g ≡ 1 (mod 4) and g ≡ 55 (mod 81)) is

δ1 = 1

4
+ 1

81
− 1

324
= 7

27
.
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Number Theory

Let α4(n) denote the characteristic function of the
integers n such that p4 - n for any prime p.

It is known that if gcd(a,q) = 1, then∑
n≤X

n≡a (mod q)

α4(n) = CqX +O(X 1/3).
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Number Theory

We use this to show that the number T(X) of integers
g ∈ S2 with g ≡ 2 (mod 4) and g ≤ X is

T(X) = X

4
− ∑

h≤X
h≡1 (mod 4)

α4(h) = X

4

(
1− 16

15ζ(4)

)
+O(X 1/3).

Using a similar argument where g ≡ 55 (mod 81), we
calculate the intersection with S1, and subtract it.

This gives the density of S2 is

δ2 = 20

27
− 79

100ζ(4)
≈ 0.0108.
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Number Theory

S3 can be described as the set A of integers g such that

g ≡ 1−a2 (mod a2(a−1)) (∗)

for some odd a > 1. The set S4 is similar.

We prove that δ3 ≈ 0.0564. and δ4 ≈ 0.0019.

Altogether, we have

δ(S) = δ1 +·· ·+δ4 ≈ 0.3284.
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The Real Genus

Every finite abelian group G has a representation
G ∼= Ze1 ×·· ·Zem ×Zd1 ×·· ·×Zd`×Zn

2 , where ei is a
multiple of 4 dj ≥ 3 is odd and as we move from left to
right all invariants divide the previous one.

McCullough (1990) obtained the formulas for the real
genus of abelian non-cyclic groups by using graph
theoretic techniques. One of 4 such formulas is given
below.

ρ(G) = 1+|G|
(
n−1+∑̀

i=1

(
1− 1

di

)
+

m∑
j=n+1

(
1− 1

ej

))
.
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The difference in the formulas

McCullough’s four formulas really just specify where
the minimum occurs in a formula similar to
Maclachlan’s formula.

In Maclachlan’s formula the last term is repeated. This
is not true in any of McCullough’s formulas. This small
change makes a huge difference. It changes where the
minimum value for the summation occurs.

For example, this small change means that we must
consider abelian groups of all ranks when looking at
the real genus spectrum.
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Basic Results

It is easy to show that

ρ(Z2 ×Z2 ×Z2c) = 1+4c.

Theorem
If A is an abelian group of odd order, then
ρ(A) ≡ 0 (mod 4).

Theorem
Let A be a finite abelian group of even order with ρ(A)
positive. If ρ(A) is not congruent to 1 (mod 4), then the
Sylow 2-subgroup of A is cyclic.
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Basic Results

Now by looking at cases, we get the following result.

Theorem
If A is a finite abelian group, then ρ(A) is not congruent
to 3 (mod 4).

As in the strong symmetric genus case, if the rank of
the abelian group is at least 3, then g −1 contains the
square of an odd prime.

Theorem
Let g ≥ 4. If g ∈ S and g −1 is squarefree, then g = ρ(A)
for an abelian group A of rank two.
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Main Results

We also obtain the following necessary condition for an
integer g to be in the spectrum.

Theorem
Let g ≥ 4. If g ∈ S, then g satisfies one of the following
conditions:

(i) g ≡ 1 (mod 4);

(ii) g ≡ 4 (mod 6) or g ≡ 16 (mod 20);

(iii) g −1 is divisible by a for some odd integer a such
that (a−1) divides g;

(iv) g −1 is divisible by p2 for some odd prime p;
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Density

It is a classical result that the squarefree integers have
asymptotic density 6/π2 ≈ .6079. The squarefree
integers are distributed among the three classes of
integers congruent to 1,2,3 (mod 4). Further, Jameson
proved that the asymptotic density of the odd
squarefree integers is 4/π2 ≈ .4053. Using these results,
we have the following bounds for the density.

0.4771 ≤ δ(S) ≤ δ(S) ≤ .6010.

THE END
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