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Definitions

Let G be a finite group.

The strong symmetric genus σ0(G) is the minimum
genus of any Riemann surface on which G acts
preserving orientation.

The real genus ρ(G) is the minimum algebraic genus of
any compact bordered Klein surface on which G acts
faithfully.
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History

There is a long history of groups acting on surfaces.

Chapter XVIII of Burnside’s 1911 book, "Theory of
Groups of Finite Order" is titled, "On the graphical
representation of a group"

In it, he shows how groups can act on a model of
Hyperbolic space and this can be translated into an
action on a surface.

In the next picture, S, T, and U are reflections in a circle
and these generators satisfy STU = 1. So U = T−1S−1

and S and T generate a free group.
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Burnside’s Pictures

Surface Representation of the Quaternion Group
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Pictures

Using Burnside’s methods, I constructed multiple
models of group actions on surfaces.

Let G = 〈x,y|x6 = 1,x3 = y2,y−1xy = x−1〉. This is the
Dicyclic Group of order 12.

The Genus Action of G is given by the following image
of the Triangle Group Γ(3,4,4).

G = 〈s, t|s4 = t4 = (st)3 = 1,st = (ts)2〉.
By looking at the number of vertices, edges and faces of
this graph, you can see that the Euler characteristic is
-2 and so the genus is 2.
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My Models

Surface Representation of the Dicyclic Group
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My Models

Surface Representation of a Group of Order 32
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Procedure for determining the Genus

In order to determine the strong symmetric genus of a
finite group G, you need to represent G as the quotient
of a Fuchsian group Γ by a surface group K .

A Fuchsian group is a discrete subgroup of PSL(2,R).
The group PSL(2,R) may be regarded as the group of
isometries of the hyperbolic plane or the conformal
transformations of the unit disk.

A surface group is a Fuchsian group with no elements
of finite order.
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Procedure for determining the Genus II

Each choice of Fuchsian group Γ and mapping onto G,
represents G as a group of automorphisms of a
Riemann surface.

Each such surface has a genus associated with it. The
Fuchsian group has a "signature" associated with it and
there is a formula which gives the genus of the
Riemann surface for each signature.

Finally, the strong symmetric genus of the group G is
the smallest genus from among the Riemann surfaces
that G acts on preserving orientation.
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Natural Questions

It is natural to try to compute the groups whose genus
is a small positive integer.

A well-known classical result of Hurwitz (1893) states
that |G| ≤ 84(g −1) for genus g, where g > 2.

Therefore, there are only a finite number of groups
whose genus is a positive integer greater than 2.
It is also natural to look at certain classes of groups
with similar presentations and find a formula which
gives the genus of each group in the class.

Coy L. May and Jay Zimmerman (Towson University)THE GENUS SPECTRUM OF FINITE ABELIAN GROUPS October 25, 2009 12 / 1



Natural Questions

It is natural to try to compute the groups whose genus
is a small positive integer.

A well-known classical result of Hurwitz (1893) states
that |G| ≤ 84(g −1) for genus g, where g > 2.

Therefore, there are only a finite number of groups
whose genus is a positive integer greater than 2.
It is also natural to look at certain classes of groups
with similar presentations and find a formula which
gives the genus of each group in the class.

Coy L. May and Jay Zimmerman (Towson University)THE GENUS SPECTRUM OF FINITE ABELIAN GROUPS October 25, 2009 12 / 1



Natural Questions

It is natural to try to compute the groups whose genus
is a small positive integer.

A well-known classical result of Hurwitz (1893) states
that |G| ≤ 84(g −1) for genus g, where g > 2.

Therefore, there are only a finite number of groups
whose genus is a positive integer greater than 2.

It is also natural to look at certain classes of groups
with similar presentations and find a formula which
gives the genus of each group in the class.

Coy L. May and Jay Zimmerman (Towson University)THE GENUS SPECTRUM OF FINITE ABELIAN GROUPS October 25, 2009 12 / 1



Natural Questions

It is natural to try to compute the groups whose genus
is a small positive integer.

A well-known classical result of Hurwitz (1893) states
that |G| ≤ 84(g −1) for genus g, where g > 2.

Therefore, there are only a finite number of groups
whose genus is a positive integer greater than 2.
It is also natural to look at certain classes of groups
with similar presentations and find a formula which
gives the genus of each group in the class.

Coy L. May and Jay Zimmerman (Towson University)THE GENUS SPECTRUM OF FINITE ABELIAN GROUPS October 25, 2009 12 / 1



Natural Questions II

Another natural problem is to determine the positive
integers that occur as the strong symmetric genus of a
group (or a particular type of group).

May & Zimmerman, 2003. There is a group of strong
symmetric genus n for each value of the integer n.

The set of positive integers that is the strong symmetric
genus of some group is called the strong symmetric
genus spectrum.
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Upper and Lower Density

Let A be a set of positive integers. For an integer X, let
[1,X ] be the set of integers between 1 and X and define
A(X) = |A∩ [1,X ]|.

If A is a set of integers, its lower and upper asymptotic
densities, denoted δ(A) and δ(A), are given by

δ(A) = liminf
X→∞

A(X)

X

and

δ(A) = limsup
X→∞

A(X)

X
.
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Density in the Integers

A set A is said to have an asymptotic density, if
δ(A) = δ(A); when A does have an asymptotic density, it
is denoted δ(A).

Now let S be the set of all positive integers that are the
strong symmetric genus of some finite group G. It
follows that δ(S) = 1.

Clearly the 2003 result of May and Zimmerman is
considerably stronger than the above density
statement.
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Density of the Abelian Spectrum

Next let A be the set of all positive integers that are the
strong symmetric genus of some finite abelian group G.

We will show that δ(A) exists and that it is
approximately .3284.

We will also give necessary and sufficient conditions for
a positive integer g to be the strong symmetric genus of
an abelian group.
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Formulas I

Recall that every finite abelian group G has a canonical
representation G ∼= Zm1 ×Zm2 ×·· ·×Zmr , with standard
invariants m1,m2, . . . ,mr subject to m1 > 1 and mi|mi+1

for 1 ≤ i < r.

Maclachlan (1965) proved that if G is an abelian group
of rank r ≥ 3, with |G| ≥ 10, then

σ0(G) = 1+ |G|
2

min
0≤γ≤r/2

{
2γ−2+

r−2γ∑
i=1

(
1− 1

mi

)
+

(
1− 1

mr−2γ

)}
.

(1)
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Formulas II

For example, when a > 1 and a3n ≥ 10, Maclachlan’s
formula yields

σ0(Za ×Za ×Zan) = 1−a2 +a2(a−1)n.

In particular, when a = 2, this reveals that S contains
the entire residue class g ≡ 1 (mod 4).

Also when a is odd, g ≡ 1−a2 (mod a)2(a−1) and this
is equivalent to g −1 is divisible by a2 for some odd
integer a with (a−1)|g by the Chinese Remainder
Theorem.
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Formulas III

When b ≥ 2 and bn > 2, Maclachlan’s formula gives

σ0(Za ×Zab ×Zabn) = 1+b2a2(a−1)n. (2)

In all cases, except when a and b are odd, with a ≡ 3
(mod 4), g ≡ 1 (mod 4).

Proposition

The spectrum of abelian groups of rank 3 consists of the
congruence class g ≡ 1 (mod 4) and the integers g
satisfying conditions (iii) or (iv) of the Theorem below.
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Main Theorem

Main Theorem
Let g ≥ 2. Then g ∈ S if and only if g satisfies one of the
following conditions:

(i) g ≡ 1 (mod 4) or g ≡ 55 (mod 81);

(ii) g −1 is divisible by p4 for some odd prime p;

(iii) g −1 is divisible by a2 for some odd integer a with
(a−1) | g;

(iv) g −1 is divisible by b2a2(a−1) for some odd integers
a,b > 1, with a ≡ 3 (mod 4).
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Rank Four Abelian Groups

Proposition

The spectrum of abelian groups of rank 4 is a subset of
the integers satisfying conditions (i) or (ii) of the Main
Theorem. Moreover, the spectrum of abelian groups of
ranks 3 or 4 contains all the integers satisfying condition
(ii) of the Main Theorem.

Proof: Notice that for an abelian group to have rank 4,
it must have a subgroup isomorphic to Z4

p for some
prime p.
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Rank Four Abelian Groups Proof

If p = 2, then g ≡ 1 (mod 4). So we may assume that the
abelian group has a subgroup isomorphic to Z4

a for
some odd integer a.

When a ≥ 5, then σ0(A) = 1+|A| for the rank 4 abelian
group A. For a = 3, then σ0(A) = 1+|A| or σ0(A) ≡ 1
(mod 4) for all except a few cases.

For the exceptional cases with a = 3, σ0(A) ≡ 55
(mod 81).

Conversely, all numbers g of the form 1+p4n are the
genus of groups of rank 3 or 4.
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High Rank Abelian Groups

Let A be an abelian group of rank n ≥ 5. So A has a
subgroup isomorphic to Zn

a . If a is even, then σ0(A) ≡ 1
(mod 4) and σ0(A) =σ0(Z2 ×Z2 ×Z2n) for some n.

If a is odd, then there is a rank four group B satisfying
|A| = |B| and so σ0(A) =σ0(B).

Therefore, the genus spectrum is given by looking at
the strong symmetric genus of groups of rank 3 or rank
4.
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Number Theory

Let Sj denote those g ∈ S that satisfy the jth condition
of the theorem but none of the earlier conditions.

For example, by the inclusion-exclusion principle, the
density of S1 (i.e., the union of the congruence classes
g ≡ 1 (mod 4) and g ≡ 55 (mod 81)) is

δ1 = 1

4
+ 1

81
− 1

324
= 7

27
.
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Number Theory

Let α4(n) denote the characteristic function of the
integers n such that p4 - n for any prime p.

It is known that if gcd(a,q) = 1, then∑
n≤X

n≡a (mod q)

α4(n) = CqX +O(X 1/3).

Coy L. May and Jay Zimmerman (Towson University)THE GENUS SPECTRUM OF FINITE ABELIAN GROUPS October 25, 2009 25 / 1



Number Theory

Let α4(n) denote the characteristic function of the
integers n such that p4 - n for any prime p.

It is known that if gcd(a,q) = 1, then∑
n≤X

n≡a (mod q)

α4(n) = CqX +O(X 1/3).

Coy L. May and Jay Zimmerman (Towson University)THE GENUS SPECTRUM OF FINITE ABELIAN GROUPS October 25, 2009 25 / 1



Number Theory

We use this to show that the number T(X) of integers
g ∈ S2 with g ≡ 2 (mod 4) and g ≤ X is

T(X) = X

4
− ∑

h≤X
h≡1 (mod 4)

α4(n) = X

4

(
1− 16

15ζ(4)

)
+O(X 1/3).

and so the density of S2 is

δ2 = 20

27
− 79

100ζ(4)
≈ 0.0108.
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Number Theory

S3 can be described as the set A of integers g such that

g ≡ 1−a2 (mod a2(a−1)) (∗)

for some odd a > 1.

The number of such g that fail condition (ii) is

S′
3(X) = ∑

g∈A
g≤X

α4(g −1)+O(1)

= ∑
d≤D

µ(d)
∑

3≤a≤D2

∑
g∈A(d,a)

g≤X

1+O(XD−3),

where D = bplnXc, A(d,a) is the set of g ∈A such that
d4 | (g −1) and a is the least odd for which (∗) holds.
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Number Theory

Using inclusion-exclusion, it is possible to estimate the
density of A(d,a) and to prove that, as X →∞,

S′
3(X) = X

∑
d≤D

µ(d)
∑

3≤a≤D2

δ(d,a)+o(X),

where δ(d,a) is a certain arithmetic function.

From this and another similar calculation, we deduce
that

δ3 ≈ 0.0564.
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Number Theory

The calculation of the density of S4 is similar to that of
the density of S3 and yields a value

δ4 ≈ 0.0019.

Altogether, we have

δ(S) = δ1 +·· ·+δ4 ≈ 0.3284.
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The Real Genus

Every finite abelian group G has a representation
G ∼= Ze1 ×·· ·Zem ×Zd1 ×·· ·×Zd`×Zn

2 , where ei is a
multiple of 4 dj ≥ 3 is odd and as we move from left to
right all invariants divide the previous one.

McCullough (1990) obtained the formulas for the real
genus of abelian non-cyclic groups by using graph
theoretic techniques. One of 4 such formulas is given
below.

ρ(G) = 1+|G|
(
n−1+∑̀

i=1

(
1− 1

di

)
+

m∑
j=n+1

(
1− 1

ej

))
.
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The difference in the formulas

McCullough’s four formulas really just specify where
the minimum occurs in a formula similar to
Maclachlan’s formula.

In Maclachlan’s formula the last term is repeated. This
is not true in any of McCullough’s formulas. This small
change makes a huge difference. It changes where the
minimum value for the summation occurs.

For example, this small change means that we must
consider abelian groups of all ranks when looking at
the real genus spectrum.
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Basic Results

It is easy to show that

ρ(Z2 ×Z2 ×Z2c) = 1+4c.

Theorem
If A is an abelian group of odd order, then
ρ(A) ≡ 0 (mod 4).

Theorem
Let A be a finite abelian group of even order with ρ(A)
positive. If ρ(A) is not congruent to 1 (mod 4), then the
Sylow 2-subgroup of A is cyclic.

Coy L. May and Jay Zimmerman (Towson University)THE GENUS SPECTRUM OF FINITE ABELIAN GROUPS October 25, 2009 32 / 1



Basic Results

It is easy to show that

ρ(Z2 ×Z2 ×Z2c) = 1+4c.

Theorem
If A is an abelian group of odd order, then
ρ(A) ≡ 0 (mod 4).

Theorem
Let A be a finite abelian group of even order with ρ(A)
positive. If ρ(A) is not congruent to 1 (mod 4), then the
Sylow 2-subgroup of A is cyclic.

Coy L. May and Jay Zimmerman (Towson University)THE GENUS SPECTRUM OF FINITE ABELIAN GROUPS October 25, 2009 32 / 1



Basic Results

It is easy to show that

ρ(Z2 ×Z2 ×Z2c) = 1+4c.

Theorem
If A is an abelian group of odd order, then
ρ(A) ≡ 0 (mod 4).

Theorem
Let A be a finite abelian group of even order with ρ(A)
positive. If ρ(A) is not congruent to 1 (mod 4), then the
Sylow 2-subgroup of A is cyclic.

Coy L. May and Jay Zimmerman (Towson University)THE GENUS SPECTRUM OF FINITE ABELIAN GROUPS October 25, 2009 32 / 1



Basic Results

Now by looking at cases, we get the following result.

Theorem
If A is a finite abelian group, then ρ(A) is not congruent
to 3 (mod 4).

As in the strong symmetric genus case, if the rank of
the abelian group is at least 3, then g −1 contains the
square of an odd prime.

Theorem
Let g ≥ 4. If g ∈ S and g −1 is squarefree, then g = ρ(A)
for an abelian group A of rank two.
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Main Results

We also obtain the following necessary condition for an
integer g to be in the spectrum.

Theorem
Let g ≥ 4. If g ∈ S, then g satisfies one of the following
conditions:

(i) g ≡ 1 (mod 4);

(ii) g ≡ 4 (mod 6) or g ≡ 16 (mod 20);

(iii) g −1 is divisible by a for some odd integer a such
that (a−1) divides g;

(iv) g −1 is divisible by p2 for some odd prime p;
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Density

It is a classical result that the squarefree integers have
asymptotic density 6/π2 ≈ .6079. The squarefree
integers are distributed among the three classes of
integers congruent to 1,2,3 (mod 4). Further, Jameson
proved that the asymptotic density of the odd
squarefree integers is 4/π2 ≈ .4053. Using these results,
we have the following bounds for the density.

0.4771 ≤ δ(S) ≤ δ(S) ≤ .6010.

THE END
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