
GROUP ACTIONS ON SURFACES

For the purposes of this talk, a discrete group acting on
a surface is a set of one to one functions from the

points on a compact surface in three dimensions onto
itself. The composition of two functions in the set is

another function in the set and the inverse of any
function in the set is also in the set.
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Imagine a perfect plain donut and think of a rotating
the donut by 90 degrees around its axis of symmetry or
reflecting it across its plane of symmetry.

These two actions would generate a group of 8
symmetries of the donut which have the same
structure as the symmetries of a square.

This is an action of the dihedral group, D8 on a torus
(donut).

Since a donut has 1 hole, this would be called a genus 1
action of D8.
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Now take one quarter of the upper half of the donut.
The group of rotations and reflections move this
surface all over the donut.

This region is called a fundamental region for this
action of D8.

The reflections reverse the orientation of the surface
and the rotations preserve the orientation.

Unfortunately, there are a lot of finite groups which
cannot act on a sphere or torus. Therefore, we have to
figure out how to construct more complicated surfaces.
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Every finite group can act on an infinite set of
topologically distinct surfaces

I will start this talk by giving some interesting and
beautiful examples from the early 1900s.

These ideas are from Chapter XVIII of Burnside’s 1911
book, "Theory of Groups of Finite Order". This chapter
is titled, "On the graphical representation of a group"

The group elements will be represented by
transformations of a plane. Then by identifying certain
regions of the plane we will obtain a compact surface.
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Definitions

Let G be a finite group.

Burnside used inversion in a circle as the
transformation of the plane. Inversion reverses the
orientation of a plane and so each element of a finite
group is represented by a composition of two
inversions. This gives an orientation preserving action
on the plane.

There is a connected region of the surface, called the
Fundamental Region, that is moved around the surface
by the inversions.
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Definitions

Regions can be divided into ones where the orientation
is preserved (white) and regions where the orientation
if reversed (black). A fundamental region of the group
is a union of one white and one black region.

In the next slide, we will look at an infinite group with 2
generators acting on the Poincare disk model of
Hyperbolic space.

The elements S, T, and U are reflections in a circle and
these generators satisfy STU = 1. So U = T−1S−1 and S
and T generate a free group.
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Background
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Definitions

The group given by 〈S,T |Sm = T n = (ST)q〉 is called a
Triangle Group and designated T(m,n,q).

Any finite 2 generator group is the image of a triangle
group.

In the diagram on the Poincare disk, the regions
containing words which realize the same group
element are identified. This effectively "folds the
hyperbolic plane into a compact surface."
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Definitions

The Quaternion Group Q is a non-abelian group with 8
elements and it has presentation
Q = 〈R,S|R4 = S4 = 1,R2 = S2,R−1SR = S−1〉.

It is easy to see that Q is an image of T(4,4,4).

It also has 16 faces (8 white and 8 black). By drawing
just these 16 faces and identifying edges, we can show
that the surface has 6 vertices and each vertex has
order 8 (corresponding to a rotation of order 4).

Therefore it has 24 edges.
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Burnside’s Picture

Surface Representation of the Quaternion Group
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Euler Characteristic

The Euler characteristic of a graph is χ= V −E +F ,
where V is the number of vertices, E is the number of
edges and F is the number of faces.

If the graph can be drawn on the plane or a sphere
than χ= 2.

The genus g of a surface is the number of "donut"
holes that it has.

The Euler characteristic is related to the genus by
χ= 2−2g. So the surface for the quaternion group has
genus 2.
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Pictures

Using Burnside’s methods, I constructed multiple
models of group actions on surfaces.

Let G = 〈x,y|x6 = 1,x3 = y2,y−1xy = x−1〉. This is the
Dicyclic Group of order 12.

The Genus Action of G is given by the following image
of the Triangle Group Γ(3,4,4).

G = 〈s, t|s4 = t4 = (st)3 = 1,st = (ts)2〉.
By looking at the number of vertices, edges and faces of
this graph, you can see that the Euler characteristic is
-2 and so the genus is 2.
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My Models

Surface Representation of the Dicyclic Group
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My Models

Quasiabelian Group of Order 16
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My Models

Surface Representation of a Group of Order 32
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Genus Parameters

Every finite group G acts on an infinite number of
compact surfaces and each of these surfaces has a
genus. The genus of the group G is the smallest genus
of any surface on which G acts faithfully.

If we restrict ourselves to orientation preserving
actions, we get the strong symmetric genus, σ0(G).

If we allow orientation reversing actions, we get the
symmetric genus, σ(G).

If we look at non-orientable or bordered surfaces, we
get other genus parameters.
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Procedure for determining the Strong
Symmetric Genus

In order to determine the strong symmetric genus of a
finite group G, you need to represent G as the quotient
of a Fuchsian group Γ by a surface group K .

A Fuchsian group is a discrete subgroup of PSL(2,R).
The group PSL(2,R) may be regarded as the group of
isometries of the hyperbolic plane or the conformal
transformations of the unit disk.

A surface group is a Fuchsian group with no elements
of finite order.
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Procedure for determining the Strong
Symmetric Genus

Each choice of Fuchsian group Γ and homomorphism
onto G, represents G as a group of isometries
(automorphisms) of a Riemann surface.

Each such surface has a genus associated with it. The
Fuchsian group has a "signature" associated with it and
there is a formula which gives the genus of the
Riemann surface for each signature.

Finally, the strong symmetric genus of the group G is
the smallest genus from among the Riemann surfaces
that G acts on preserving orientation.
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Procedure for determining the Strong
Symmetric Genus

It is relatively easy to find a homomorphism from a
Fuchsian group onto a finite group G. This surjection
induces an action of G on a Riemann surface defined
by taking a quotient of the upper half - plane (as a
model of hyperbolic space) and using G to identify
regions.

The genus depends on the non-Euclidean area of the
fundamental region. The smaller the area, the smaller
the genus.
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Procedure for determining the Strong
Symmetric Genus

The hard part is to show that there is no
homomorphism from a Fuchsian group whose
fundamental region has smaller area onto G. Once you
have the smallest possible area, you have the Strong
Symmetric Genus.

So to find σ0(G) for a finite group G, you must find a
Fuchsian group and a homomorphism onto G with
kernel a surface group and the Fuchsian group must
have the smallest possible non-Euclidean area for a
Fundamental region.
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Procedure for determining the
Symmetric Genus

In order to determine the symmetric genus of a finite
group G, you need to represent G as the quotient of a
Non-Euclidean Crystallographic Group (NEC group) Γ
by a surface group K .

An NEC group is similar to a Fuchsian group, but has
orientation reversing elements as well.

Finally, the symmetric genus of the group G is the
smallest genus from among the Riemann surfaces that
G acts on possibly reversing the orientation of the
surface.
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Natural Questions

It is natural to try to compute the groups whose genus
is a small positive integer.

A well-known classical result of Hurwitz (1893) states
that |G| ≤ 84(g −1) for genus g, where g > 2.

Therefore, there are only a finite number of groups
whose genus is a positive integer greater than 2.

It is also natural to look at certain classes of groups
with similar presentations and find a formula which
gives the genus of each group in the class.
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Natural Questions

The finite abelian groups are a natural class to look at.

C. MacLachlan, 1965. In the paper, Abelian Groups of
Automorphisms of Compact Riemann Surfaces,
MacLachlan gave a rather complicated formula for the
strong symmetric genus of a finite abelian group.

May & Zimmerman, 1993. In the paper, The
symmetric genus of finite abelian groups, Dr. May and
I updated MacLachlan’s results to include orientation
reversing actions and gave a formula for the symmetric
genus of a finite abelian group.
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Natural Questions II

Another natural problem is to determine the positive
integers that occur as the strong symmetric genus of a
group (or a particular type of group).

The set of positive integers that is the strong symmetric
genus of some group is called the strong symmetric
genus spectrum.

This is hard because given a positive integer, it is not
clear what finite group G will have that integer as its
genus.

Jay Zimmerman (Towson University) GROUP ACTIONS ON SURFACES June 1, 2024 24 / 39



Natural Questions II

Another natural problem is to determine the positive
integers that occur as the strong symmetric genus of a
group (or a particular type of group).

The set of positive integers that is the strong symmetric
genus of some group is called the strong symmetric
genus spectrum.

This is hard because given a positive integer, it is not
clear what finite group G will have that integer as its
genus.

Jay Zimmerman (Towson University) GROUP ACTIONS ON SURFACES June 1, 2024 24 / 39



Natural Questions II

Another natural problem is to determine the positive
integers that occur as the strong symmetric genus of a
group (or a particular type of group).

The set of positive integers that is the strong symmetric
genus of some group is called the strong symmetric
genus spectrum.

This is hard because given a positive integer, it is not
clear what finite group G will have that integer as its
genus.

Jay Zimmerman (Towson University) GROUP ACTIONS ON SURFACES June 1, 2024 24 / 39



Natural Questions II

This question had been unanswered for several
decades and was thought to be fairly hard.

May & Zimmerman, 2003. There is a group of strong
symmetric genus n for each value of the non-negative
integer n.

σ0(Z4 ×Dn) = n for n odd and n ≥ 3.

σ0(DCn) = n for n even.

σ0(Zk ×Dn) also covers all even positive integers for
appropriate values of k and n.
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Natural Questions III

Another natural problem is to determine if all positive
integers can occur as the symmetric genus of a group.

This is still an open question. The following theorem
summarizes what is known.

Conder and Tucker, 2011. If g is any non-negative
integer such that g is not congruent to 8 or 14
(mod 18), then there exists a finite group G with
symmetric genus σ(G) = g. Moreover, the same holds if
g ∼= 8 or 14 (mod 18) and every factor pe in the
prime-power factorization of g −1 is congruent to 1
(mod 6).
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Small Numbers

Ph.D. Thesis, Stephen Lo, 2018 If g is a non-negative
integer less than 1000, then g =σ(G) for some finite
group G, unless |G| = 392,536,800,836,980.

Most researchers in this area believe and conjecture
that there are no gaps in the symmetric genus
spectrum.

It is also possible to look at the (strong) symmetric
genus spectrum for classes of finite groups.
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Upper and Lower Density

Let A be a set of positive integers. For an integer X, let
[1,X ] be the set of integers between 1 and X and define
A(X) = |A∩ [1,X ]|.

If A is a set of integers, its lower and upper asymptotic
densities, denoted δ(A) and δ(A), are given by

δ(A) = liminf
X→∞

A(X)

X

and

δ(A) = limsup
X→∞

A(X)

X
.
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Density in the Integers

A set A is said to have an asymptotic density, if
δ(A) = δ(A); when A does have an asymptotic density, it
is denoted δ(A).

Now let S be the set of all positive integers that are the
strong symmetric genus of some finite group G. It
follows that δ(S) = 1.

Clearly the 2003 result of May and Zimmerman is
considerably stronger than the above density
statement.
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Density of the Abelian Spectrum

Next let A be the set of all positive integers that are the
strong symmetric genus of some finite abelian group G.

Dr. May and I ran a summer research experience for 3
undergraduate students. The result was as follows.

Borror, Morris, Tarr, 2014. If J is the strong symmetric
genus of all abelian groups, then δ(J) ≥ 643

2025 > .3175.

They did such a nice job that I had to wonder how
much further we could go.
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Density of the Abelian Spectrum

The question of whether the asymptotic density for all
abelian groups exists had never been answered.

We showed that δ(J) exists and that it is approximately
.3284.

We also gave necessary and sufficient conditions for a
positive integer g to be the strong symmetric genus of
an abelian group.
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Formulas III

The following theorems are from Kumchev, A. V., May,
C. L., Zimmerman, J. J. (2017). The strong symmetric
genus spectrum of abelian groups. Archiv der
Mathematik, 108(4), 341-350.

Proposition

The spectrum of abelian groups of rank 3 consists of the
congruence class g ≡ 1 (mod 4) and the integers g
satisfying conditions (iii) or (iv) of the Theorem below.
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Main Theorem

Main Theorem
Let g ≥ 2. Then g is the strong symmetric genus of an
abelian group if and only if g satisfies one of the
following conditions:

(i) g ≡ 1 (mod 4) or g ≡ 55 (mod 81);

(ii) g −1 is divisible by p4 for some odd prime p;

(iii) g −1 is divisible by a2 for some odd integer a with
(a−1) | g;

(iv) g −1 is divisible by b2a2(a−1) for some odd integers
a,b > 1, with a ≡ 3 (mod 4).
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Rank Four Abelian Groups

Proposition

The spectrum of abelian groups of rank 4 is a subset of
the integers satisfying conditions (i) or (ii) of the Main
Theorem. Moreover, the spectrum of abelian groups of
ranks 3 or 4 contains all the integers satisfying condition
(ii) of the Main Theorem.

Abelian groups of rank 5 or greater have the same
genus as an abelian group of rank 3 or 4.
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Maximum Group Order

A well-known classical result of Hurwitz (1893) states
that if a finite group G acts preserving orientation on a
surface of genus g where g > 2, then |G| ≤ 84(g −1).

If |G| = 84(g −1), then G is called a Hurwitz group.

If we allow orientation reversing actions, then
|G| ≤ 168(g −1) and G is called an extended Hurwitz
group.

Hurwitz groups and extended Hurwitz groups only
occur for a small number of genera g. See Conder, M.
(2010). An update on Hurwitz groups.
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Maximum Group Order

Let N(g) (respectively M(g)) be the largest order of a
group of automorphisms of a Riemann surface of
genus g ≥ 2 preserving the orientation (respectively
possibly reversing the orientation) of the surface.

The basic inequalities comparing N(g) and M(g) are
N(g) ≤ M(g) ≤ 2N(g).

There are well-known families of extended Hurwitz
groups that provide an infinite number of integers g
satisfying M(g) = 2N(g). It is also easy to see that there
are solvable groups which provide an infinite number
of such examples.
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Maximum Group Order

Accola, 1968. and MacLachlan, 1968 showed that
N(g) ≥ 8(g +1) and there are an infinite number of
examples where this occurs.

May and Zimmerman, 2022. showed that
M(g) ≥ 16(g +1) and there are an infinite number of
examples where this occurs.

May and Zimmerman, 2022. Surprisingly, there are an
infinite number of positive integers g where
M(g) = N(g).
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Maximum Group Order

May and Zimmerman, 2022. showed that if p is a large
enough prime number satisfying p ≡ 1 (mod 6) and
g = 2p+1 or g = 3p+1, then M(g) = N(g) = 24(g −1).

C.L. May and J. Zimmerman, Maximal order group
actions on Riemann surfaces of genus 1 + 3p, Rocky
Mountain Journal Math. 54, No. 2 (2024) 495 - 508.

Suppose p ≡ 5 (mod 6). We prove that if p is also
congruent modulo 25 to 1, 6, 11 or 16, then
N(g) = 8(g +11) and M(g) = 16(g +11); otherwise
N(g) = 8(g +1) and M(g) = 16(g +1).
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THE END

THE END
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