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Abstract. We examine indivisibility for classes of graphs. We show
that the class of hereditarily α-sparse graphs is indivisible if and only
if α > 2. Additionally, we show that the following classes of graphs
are indivisible: perfect graphs, cographs, and chordal graphs, and the
following classes of graphs are not indivisible: threshold graphs, split
graphs, and distance-hereditary graphs.

1. Introduction

In this paper, we study indivisibility, a coloring property of classes of
structures, which is related to the Ramsey property. We consider this
property on several classes of graphs, including hereditarily sparse graphs
and graph classes that are characterized by forbidding certain induced sub-
graphs.

We say that a class of structures is indivisible if, given any element A
of the class and any number of colors k, there exists another (ostensibly
much larger) element of the class B such that, no matter how we color B
with k colors, there exists a monochromatic copy of A in B. This property is
related to the Ramsey property – in fact, if a class contains only one singleton
structure up to isomorphism, then it is equivalent to the Ramsey property
on singletons. Indivisibility has been studied extensively, in particular by
N. Sauer; for example, see [6, 7, 21, 22]. For example, it is known that the
class of all finite simple graphs is indivisible, as is the class of all finite
Kn-free graphs for n ≥ 3 [6]. In this paper, we examine indivisibility for
other classes of graphs, including classes that do not have the amalgamation
property and, hence, have no generic limit.

The first and fourth authors became interested in indivisibility via its
relationship to configurations and the classification of theories by combina-
torial complexity; see [9, 10]. Assuming that the index class of structures is
indivisible generates enough “uniformity” to make understanding the con-
figurations easier (without requiring the restrictive notion of being Ramsey).
Though the authors originally assumed that the index classes had the strong
amalgamation property in [9], this assumption was dropped in their later
work with L. Scow [10], so many of the classes presented in this paper work
in the more general setting.

The motivation for studying the particular graph classes in this paper pri-
marily comes from several papers in model theory. One paper, by J. Brody
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and M. C. Laskwoski [3], examines model theoretic properties of the generic
limit of the class of hereditarily α-sparse graphs. We borrow much of our ter-
minology from that paper, including the function δα, and the classes Kα and
K+
α . In another paper [17], M. C. Laskowski and C. Terry study “speeds”

of hereditary classes of L-structures in a finite relational language L. That
paper focuses on classes of structures with the hereditary property, since
these classes have a well-defined boundary and, hence, have a classifying
universal theory. Restricting to classes of graphs, in [16], A. H. Lachlan and
R. Woodrow classify the classes of graphs have the amalgamation property
based on their boundaries (see Section 5 for more details).

This paper consists of five further sections. Section 2 states some es-
tablished definitions and previous results. Section 3 examines hereditarily
sparse graphs. We prove that, for all positive real numbers α, the class of
hereditarily α-sparse graphs is indivisible if and only if α > 2 (Theorem 3.7)
and, the class of all strictly hereditarily α-sparse graphs is indivisible if and
only if α ≥ 2 (Theorem 3.10). Section 4 examines classes of graphs defined
by forbidding induced subgraphs. We prove that the following classes of
graphs are indivisible: perfect graphs, cographs, and chordal graphs, and
we prove that the following classes of graphs are not indivisible: threshold
graphs, split graphs, and distance-hereditary graphs (Theorem 4.26). In
Section 5, we discuss indivisibility for classes of graphs with the amalga-
mation property. Finally, Section 6 has some concluding remarks and open
problems.

2. Preliminaries

The objects considered in this paper are primary simple graphs. However,
the paper is written from a model-theoretic perspective, so some of the
notation may seem strange to combinatorialists. For example, we will use G
to denote the graph G, but, abusing notation, we will also use it to denote
the vertex set of G. On the other hand, we use EG to denote the edge set of
G. Note that EG is a set of ordered pairs that is irreflexive and symmetric
(i.e., for all a ∈ G, (a, a) /∈ EG and, for all a, b ∈ G, if (a, b) ∈ EG, then
(b, a) ∈ EG). So |EG| is twice the number of edges in G. The important
notion of “substructure” for us will be induced subgraph instead of merely
subgraph.

Let L be a finite relational language. For most of this paper, we will
restrict to the language of graphs, L = {E}, where E is a binary relation
symbol. Let K be a class of finite L-structures that is closed under iso-
morphism. Again, we will typically consider subclasses of G, the class of
all finite simple graphs. For A,B ∈ K, when we write A ⊆ B, we mean
that A is a substructure of B (which, for graphs, means that A is an in-
duced subgraph of B). An embedding from A to B is an injective function
f : A → B that preserves the interpretations all of the relation symbols in
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L. For graphs, this means that a and b are adjacent if and only if f(a) and
f(b) are adjacent.

We will mostly be interested in classes that have the hereditary property:

Definition 2.1 (Hereditary Property). We say that K has the hereditary
property if, for all A ∈ K and B ⊆ A, B ∈ K.

Together with the hereditary property, the amalgamation property guar-
antees the existence of a generic limit structure (via Fräıssé’s Theorem; see
Theorem 7.1.2 of [13] or see [8]).

Definition 2.2 (Amalgamation Property). We say that K has the amalga-
mation property if, for all A,B0, B1 ∈ K and for all embeddings f0 : A→ B0

and f1 : A → B1, there exists C ∈ K and embeddings g0 : B0 → C and
g1 : B1 → C such that g0 ◦ f0 = g1 ◦ f1.

For example, G itself has the amalgamation property, and the generic
limit of G is the random graph (sometimes called the Rado graph). However,
it turns out that most classes of graphs do not have the amalgamation
property, as we will see in Corollary 5.2 below.

Throughout this paper, for any positive integer n, let [n] denote the set
of the first n positive integers; i.e.,

[n] = {1, 2, . . . , n}.
For a positive integer n, let Kn denote the complete graph on n vertices, let
Nn denote the graph with n vertices and no edges, let Pn denote the path
on n vertices, and let Cn denote the cycle on n vertices (when n ≥ 3). We
will assume that each of these graphs has universe [n].

If G is a graph, a clique of G is an induced subgraph of G that is a
complete graph and an independent set of G is an induced subgraph of G
that is a null graph. For a graph G and a ∈ G, let degG(a) denote the degree
of a in G; that is,

degG(a) =
{
b ∈ G : (a, b) ∈ EG

}
.

If G is understood, we will drop references to it and write deg(a). A graph
G is called k-regular if, for all vertices a ∈ G, degG(a) = k.

For us, graph colorings will be vertex colorings, and we are often interested
in colorings that are not necessarily “proper.” A k-coloring of an L-structure
A is a function c : A→ [k]. For L-structures A and B and a k-coloring c of
B, we say that B has a monochromatic copy of A with respect to c if there
exists an embedding f : A→ B such that, for all a0, a1 ∈ A,

c(f(a0)) = c(f(a1)).

It will often be convenient to think of f itself, rather than its image, as the
“copy” of A in B.

Definition 2.3 (Indivisible). We say that K is indivisible if, for all A ∈ K
and positive integers k, there exists B ∈ K such that, for every k-coloring c
of B, B has a monochromatic copy of A with respect to c.



4 GUINGONA, NUSBAUM, PADAMSEE, PARNES, PIPPIN, ZINMAN

It turns out that two colors suffice to show indivisibility.

Theorem 2.4 (Theorem 1 of [7]). A class K is indivisible if and only if,
for all A ∈ K, there exists B ∈ K such that, for all 2-colorings c of B, B
has a monochromatic copy of A with respect to c.

It is frequently helpful to describe a class of graphs by its boundary, which
always exists and is unique up to isomorphism if the class has the hereditary
property.

Definition 2.5 (Boundary). Suppose that K has the hereditary property.
Then, a set A of L-structures is a boundary of K if

(1) for all A,B ∈ A, there exists no embedding f : A→ B; and
(2) if C is a finite L-structure, then C ∈ K if and only if for each A ∈ A,

there is no embedding f : A→ C.

Theorem 2.6 ([22]). If K has the hereditary property, then the boundary
of K is unique up to isomorphism.

Since the boundary of K is unique when K has the hereditary property,
we will give it a name, bnd(K). For example, bnd(G) (the boundary of the
class of all finite graphs) is the set containing a loop and a directed edge.

bnd(G) =
{

,
}

Let A be a set of finite L-structures A. Define Forb(A) to be the class
of all finite L-structures B such that, for all A ∈ A, there is no embedding
of A into B. Here “Forb” stands for “forbidden.” Clearly Forb(A) has the
hereditary property. Furthermore, if we assume that, for all A,B ∈ A, there
exists no embedding f : A→ B, then, up to isomorphism,

bnd(Forb(A)) = A.
The next lemma follows from chasing definitions.

Lemma 2.7. If {Ai : i ∈ I} is a set of sets of finite L-structures, then⋂
i∈I

Forb (Ai) = Forb

(⋃
i∈I
Ai

)
.

If A a class of finite graphs, we use ForbG(A) to denote Forb(A∪bnd(G)).
That is, ForbG(A) is the class of all graphs forbidding graphs from A as
induced subgraphs.

For n ≥ 3, ForbG(Kn) has the amalgamation property, and the generic
limit of ForbG(Kn) is usually called the nth Henson graph; see [12]. It
is shown in [6] that ForbG(Kn) is indivisible for all n ≥ 3. This paper
examines indivisibility for other classes of graphs, even those without the
amalgamation property (hence without generic limits).

Let L be a finite relational language and, for each R ∈ L, associate to it
some positive real number αR. Then, we can use this sequence α to create
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a “sparseness” measure on L-structures as follows: For any L-structure A,
let

δα(A) = |A| −
∑
R∈L

αR
arity(R)!

∣∣AR∣∣ .
(Here arity(R) denotes the arity of the relation symbol R, which for the
edge relation E on graphs is 2.) In particular, for graphs, we choose a single
positive real number α (corresponding to αE) and we get, for any finite
graph G,

(1) δα(G) = |G| − αe(G),

where e(G) counts the number of edges in G; i.e.,

e(G) =
1

2

∣∣EG∣∣ .
In other words, δα(G) is the difference between the number of vertices and
α times the number of edges. Note that, if G is the disjoint union of graphs
A and B, then

δα(G) = δα(A) + δα(B).

With this, we can define two types of classes of sparse graphs.

Definition 2.8 (Kα and K+
α ). Let α be a positive real number. Define

Kα = {A ∈ G : for all B ⊆ A, δα(B) ≥ 0}
K+
α = {A ∈ G : for all non-empty B ⊆ A, δα(B) > 0} .

Remark 2.9. For any positive real number α and G ∈ G, G ∈ Kα if and
only if, for all subgraphs H of G with at least one edge,

|H|
e(H)

≥ α.

In other words, the ratio of vertices to edges is a bounded below by α.
Therefore, Kα is the class of all graphs that are hereditarily α-sparse. Note
that we do not need to restrict to induced subgraphs here, as removing edges
would only increase |H|/e(H).

This is also related to the notion of the maximum average degree of a
graph. By the Degree-Sum Formula, the average degree of a graph G is
2e(G)/|G|. Therefore, we define the maximum average degree of a graph
G to be the maximum of 2e(H)/|H| over all subgraphs H of G. Clearly, a
graph G is in Kα if and only if it has maximum average degree at most 2

α .

For any L-structure A, we can define the complement of A, denoted A,
to be the L-structure with universe A and, for all relation symbols R ∈ L,

if n = arity(R), then RA is the set of all (a1, . . . , an) ∈ An such that

• (a1, . . . , an) ∈ RA and there exist distinct i, j ∈ [n] such that ai = aj ;
or
• (a1, . . . , an) /∈ RA and, for all distinct i, j ∈ [n], ai 6= aj .
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That is, we keep the same relation when there are repeated entries and swap
the relation when each entry is distinct (including unary relation symbols).

Clearly A = A. When applied to graphs, this is the usual graph complement
and, when applied to strict linear orders, this is the reverse order.

The next lemma follows from definition-chasing.

Lemma 2.10. Let L be a finite relational language, let A and B be L-
structures, and let f : A→ B be an embedding. Then, f is an embedding of
A into B.

If L is a finite relational language and K is a class of finite L-structures,
we can define the complement class of K as follows:

K =
{
A : A ∈ K

}
.

The following proposition follows immediately from the previous lemma.

Proposition 2.11. Let L be a finite relational language and let K be a class
of finite L-structures.

(1) K has the hereditary property if and only if K has the hereditary
property.

(2) K has the amalgamation property if and only if K has the amalga-
mation property.

(3) K is indivisible if and only if K is indivisible.
(4) for any set A of finite L-structures,

Forb(A) = Forb(A).

In particular, note that, if A is a set of finite graphs, then

(2) ForbG(A) = ForbG(A),

since bnd(G) = bnd(G).
Let L be a finite relational language and let A be an L-structure. We say

that A is irreflexive if, for all relation symbols R ∈ L (say of arity n), for all
a1, . . . , an ∈ A, if (a1, . . . , an) ∈ RA, then ai 6= aj for all distinct i, j ∈ [n].

Definition 2.12 (Lexicographic product). Let L be a finite relational lan-
gauge where each relation symbol is at least binary and let A and B be
irreflexive L-structures. The lexicographic product of A and B, denoted
A[B], is the L-structure with universe A × B and, for all relation symbols

R ∈ L say of arity n, define RA[B] by the set of all ((a1, b1), . . . , (an, bn))
such that ai ∈ A and bi ∈ B for all i ∈ [n] and either

(1) (a1, . . . , an) ∈ RA; or
(2) a1 = · · · = an and (b1, . . . , bn) ∈ RB.

This generalizes the notion of the lexicographic product of graphs and
linear orders. This is Definition 1.11 of [18] and it is related to the lexico-
graphic product discussed in [10], but missing the equivalence relation that
identifies the first-coordinate, what N. Meir calls “s.”

The following proposition follows from definition-chasing.
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Proposition 2.13. Let L be a finite relational language where each relation
symbol is at least binary and let A and B be two irreflexive L-structures.
Then,

A[B] = A
[
B
]
.

3. Hereditarily sparse graphs

In this section, we examine Kα and K+
α for positive real numbers α.

First, we list some connections between various classes of hereditarily sparse
graphs.

Lemma 3.1. For all α, β > 0,

(1) If α < β, then Kβ ⊆ K+
α ⊆ Kα.

(2) If α is irrational, then Kα = K+
α .

(3) K+
α =

⋃
γ>α Kγ.

Proof. (1): Follows from definitions.
(2): This is the comment following Definition 2.2 of [3].
(3): Clearly (1) implies

⋃
γ>α Kγ ⊆ K+

α . For the converse, fix G ∈ K+
α

and let

β = min {|H|/e(H) : H ⊆ G, e(H) ≥ 1} .
One can easily verify that β > α and G ∈ Kβ. �

When studying hereditarily α-sparse graphs, most papers are only con-
cerned with α ∈ (0, 1) (see, for example, [3]). However, for completeness, we
will consider all positive real numbers α. The classes Kα and K+

α become
somewhat uninteresting for α ≥ 1.

Let F be the class of all finite forests. That is,

F = ForbG ({Cn : n ≥ 3}) .
The next proposition follows from definitions.

Proposition 3.2. For α ≥ 1, we classify Kα and K+
α as follows:

(1) K1 is the class of all finite graphs where each connected component
has at most one cycle;

(2) K+
1 = F;

(3) for α > 1, Kα is the class of all G ∈ F where each connected com-

ponent of G has at most
⌊

1
α−1 + 1

⌋
vertices; and

(4) for α > 1, K+
α is the class of all G ∈ F where each connected

component of G has at most
⌈

1
α−1

⌉
vertices.

In particular, K+
α ⊆ F for all α ≥ 1 and Kα ⊆ F for all α > 1. Moreover,

note that K+
α is the class of all finite null graphs for α ≥ 2 and Kα is the

class of all finite null graphs for α > 2.
For α ∈ (0, 1), a classification of Kα or K+

α becomes more difficult. How-
ever, there are easy examples of graphs that belong in these classes.
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Lemma 3.3. For all α > 0, for all positive integers k ≤ 2
α , for all k-regular

graphs G, G ∈ Kα.

Proof. Take H ⊆ G and a ∈ H. Clearly degH(a) ≤ degG(a) = k. By the
Degree-Sum Formula, e(H) ≤ k|H|/2. Thus,

δα(H) = |H| − αe(H) ≥ |H| − kα|H|
2
≥ |H| − |H| = 0.

�

This lemma allows us to specify when a complete graph is contained in
Kα.

Corollary 3.4. Fix α > 0. Then, for all positive integers n,

Kn ∈ Kα if and only if n ≤ 2

α
+ 1

Hence, Km for m =
⌊
2
α + 1

⌋
is the largest complete graph in Kα.

Proof. If n ≤ 2
α + 1, then Kn is (n − 1)-regular and n − 1 ≤ 2

α . Therefore,

by Lemma 3.3, Kn ∈ Kα. On the other hand, if n > 2
α + 1, then

e(Kn) =

(
n

2

)
= (n− 1)

n

2
>

2

α
· n

2
=
n

α
=
|Kn|
α

.

Thus, δα(Kn) = |Kn| − αe(Kn) < 0. Therefore, Kn /∈ Kα. �

We can generalize this to “windmill graphs.”

Definition 3.5. The (m,n)-windmill graph, denoted Wd(m,n), is the graph
obtained by taking n copies of Km and joining them over a single vertex. In
other words, the vertex set is

Wd(m,n) = {(i, j) : i ∈ [n], j ∈ [m− 1]} ∪ {1}
and the edge set is

EWd(m,n) = {((i, j0), (i, j1)) : i ∈ [n], j0, j1 ∈ [m− 1]}∪
{((i, j), 1) : i ∈ [n], j ∈ [m− 1]}∪
{(1, (i, j)) : i ∈ [n], j ∈ [m− 1]} .

For any i ∈ [n], call {(i, j) : j ∈ [m − 1]} ∪ {1} the ith petal of Wd(m,n).
We call 1 the center of Wd(m,n). Note that Wd(m,n) has n(m − 1) + 1
vertices and n

(
m
2

)
edges.

For example, Wd(4, 3) is the following graph.

Which of these graphs belong to Kα? This is answered by the following
lemma.
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Lemma 3.6. Fix 0 < α ≤ 2 and let m =
⌊
2
α + 1

⌋
. Then, for all positive

integers n,

Wd(m,n) ∈ Kα if and only if n ≤ 2

(αm− 2)(m− 1)
.

Proof. From Corollary 3.4, we know that Km is the largest complete graph
in Kα. Note that, since m > 2

α , αm− 2 > 0. Moreover, since α ≤ 2, m > 1;

thus, m− 1 > 0. Since m ≤ 2
α + 1,

(αm− 2)(m− 1) ≤ (2 + α− 2)
2

α
= 2.

Therefore,
2

(αm− 2)(m− 1)
≥ 1.

First, assume that n ≤ 2
(αm−2)(m−1) . This clearly implies

δα(Wd(m,n)) = n(m− 1) + 1− αnm(m− 1)

2

= 1 +
n(m− 1)(2− αm)

2
≥ 0.

From this inequality, we obtain

αm

2
≤ 1 +

1

n(m− 1)
.

Let H ⊆ Wd(m,n). If the center of Wd(m,n) is not in H, then H is a
disjoint union of graphs of the form Kj for j < m. Hence, by Corollary
3.4, δα(H) ≥ 0. Therefore, we may assume that the center is in H. For
each i ∈ [n], let mi denote the size of the intersection of the ith petal of
Wd(m,n) with H, which is isomorphic to Kmi . As the center is in H, we
have 1 ≤ mi ≤ m. Moreover,

α

(
mi

2

)
≤ αm

2
(mi − 1) ≤ mi − 1 +

mi − 1

n(m− 1)
.

Thus,

δα(H) =

n∑
i=1

(
mi − 1− α

(
mi

2

))
+ 1 ≥ − 1

n

n∑
i=1

mi − 1

m− 1
+ 1 ≥ −n

n
+ 1 = 0.

In either case, we get δα(H) ≥ 0, so Wd(m,n) ∈ Kα.
Next, assume that n > 2

(αm−2)(m−1) . Thus, n(2 − αm)(m − 1) < −2.

Therefore,

δα(Wd(m,n)) = n(m− 1) + 1− αnm(m− 1)

2
=

n(2− αm)(m− 1)

2
+ 1 < −1 + 1 = 0.

Thus, Wd(m,n) /∈ Kα. �
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Let m =
⌊
2
α + 1

⌋
and n =

⌊
2

(αm−2)(m−1)

⌋
. Then, Wd(m,n) is well-defined

and n is the largest integer such that Wd(m,n) ∈ Kα.
We use these graphs to establish the following theorem.

Theorem 3.7. For all α > 0, Kα is indivisible if and only if α > 2.

Proof. As noted above, for α > 2, Kα is the class of all finite null graphs.
By the Pigeonhole principle, this is indivisible.

Suppose 0 < α ≤ 2. Let

m =

⌊
2

α
+ 1

⌋
and n =

⌊
2

(αm− 2)(m− 1)

⌋
.

By Corollary 3.4, m is maximal such that Km ∈ Kα and, by Lemma 3.6, n
is maximal such that Wd(m,n) ∈ Kα. We show that Kα is not indivisible.

Let A = Km, let B ∈ Kα be arbitrary. Toward a contradiction, suppose
that, for all (n+1)-colorings c of B, B has a monochromatic copy of A with
respect to c. Then, choose an (n+ 1)-coloring c of B such that the number
of monochromatic copies of A in B with respect to c is minimal (there is at
least one by assumption). We will use this coloring to demonstrate that B
contains Wd(m,n+1) as a subgraph by starting with a monochromatic copy
of A in B and changing the color of a single vertex to each other available
color.

Take any monochromatic copy f of A in B with respect to c; i.e., f :
A → B is an embedding of A into B such that c(f(a)) = c(f(a′)) for all
a, a′ ∈ A. Fix a0 ∈ A and let b0 = f(a0). For each ` ∈ [n + 1], define an
(n+ 1)-coloring c` : B → [2] by setting

c`(b) =

{
c(b) if b 6= b0,

` if b = b0
.

Note that cc(b0) = c. For any ` 6= b0, note that f is not a monochromatic
copy of A in B with respect to c`. Thus, by choice of c, there must exist a
monochromatic copy of A in B with respect to c`, which is not a monochro-
matic copy of A in B with respect to c; call it f`. Since c and c` differ only on
b0, this implies that b0 ∈ f`(A). Therefore, c`(f`(A)) = {`}. For all distinct
`, `′ ∈ [n+ 1], since c` and c`′ agree on all points outside of b0, yet the color
of c`(f`(A)) and c`′(f`′(A)) disagree, we conclude that f`(A)∩f`′(A) = {b0}.
Therefore,

Wd(m,n+ 1) is a subgraph of
n+1⋃
`=1

f`(A).

This implies that Wd(m,n + 1) ∈ Kα, a contradiction. Therefore, there
exists an (n + 1)-coloring c of B such that B contains no monochromatic
copies of A with respect to c. That is, Kα is not indivisible. �

We can prove a similar result for K+
α , but this requires looking at a class

of graphs we are calling pseudo-windmill graphs.
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Definition 3.8. Let G be a finite connected graph. The pseudo-windmill
graph class, denoted PW(G,n), is the class of all graphs which consist of n
copies of G each joined over a single vertex. In other words, for each choice
of (not necessarily distinct) a1, . . . , an ∈ G, define a graph H whose vertex
set is

H = {(i, b) : i ∈ [n], b ∈ G \ {ai}} ∪ {1}
and whose edge set is

EH = {((i, b), (i, c)) : i ∈ [n], b, c ∈ G \ {ai}, (b, c) ∈ EG}∪
{((i, b), 1) : i ∈ [n], b ∈ G \ {ai}, (b, ai) ∈ EG}∪
{(1, (i, b)) : i ∈ [n], b ∈ G \ {ai}, (ai, b) ∈ EG}.

For i ∈ [n], call {(i, b) : i ∈ [n], b ∈ G \ {ai}} ∪ {1} the ith petal of H and
call 1 the center of H. Then, PW(G,n) is the class of all such graphs H
ranging over all choices of a1, . . . , an ∈ G.

Note that PW(Km, n) contains only graphs isomorphic to Wd(m,n),
hence this is a generalization of windmill graphs. Moreover, PW(G, 1) =
{G}. Below are examples of two graphs in PW(P3, 6).

To prove the analogous result of Theorem 3.7 for K+
α , we concentrate on

the graph G obtained by removing a single edge from Km. We now prove
the analogue of Lemma 3.6.

Lemma 3.9. Fix m ≥ 4, let G be the graph Km with one edge removed,
and let α = 2

m−1 . For all positive integers n,

(1) If n < m−1
m−3 , then PW(G,n) ⊆ K+

α .

(2) If n ≥ m−1
m−3 , then PW(G,n) ∩K+

α = ∅.
(Note that, for m ≥ 6, the first case only happens when n = 1.)

Proof. First, since m ≥ 4, 0 < α ≤ 2
3 and 1 < m−1

m−3 ≤ 3. Note that, if
1 ≤ ` < m, then

δα(K`) = `− α
(
`

2

)
= `− `(`− 1)

m− 1
≥ `− (m− 1)(`− 1)

m− 1
= 1.

Similarly, if 1 ≤ ` ≤ m and B is K` with one edge removed, then

δα(B) = `− α
((

`

2

)
− 1

)
= `− `(`− 1)

m− 1
+

2

m− 1
≥ 2

m− 1
,

with equality if ` = m.
(1): Assume n < m−1

m−3 , fix H ∈ PW(G,n), and fix A ⊆ H non-empty. If
A does not contain the center of H, then A is a disjoint union of graphs,
each with at most m − 1 vertices, which are either complete or missing a
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single edge. As noted above, each of these graphs have δα > 0. Therefore,
δα(A) > 0. Thus, H ∈ K+

α .
Therefore, we may assume that A contains the center. For each i ∈ [n],

let Bi denote the intersection of A with the ith petal of H and let `i = |Bi|.
Then, Bi is isomorphic to either K`i and 1 ≤ `i < m or K`i missing an edge
and 1 ≤ `i ≤ m. In the first case, δα(Bi) − 1 ≥ 0 and, in the second case,
δα(Bi)− 1 ≥ 2

m−1 − 1 = −m−3
m−1 . Then,

δα(A) =
n∑
i=1

(δα(Bi)− 1) + 1 ≥ 1− n · m− 3

m− 1
> 1− m− 1

m− 3
· m− 3

m− 1
= 0.

Hence, H ∈ K+
α .

(2): Assume n ≥ m−1
m−3 and fix H ∈ PW(G,n). Then, when B is Km with

one edge removed,

δα(H) =

n∑
i=1

(δα(B)− 1) + 1 = 1− n · m− 3

m− 1
≤ 1− m− 1

m− 3
· m− 3

m− 1
= 0.

Hence, H /∈ K+
α . �

Finally, we get the desired result for K+
α .

Theorem 3.10. For all α > 0, K+
α is indivisible if and only if α ≥ 2.

Proof. As previously noted, for α ≥ 2, K+
α is the class of all finite null

graphs, hence is indivisible.
Suppose 0 < α < 2 and let m =

⌊
2
α + 1

⌋
. If m < 2

α + 1, then, by
the proof of Lemma 3.6, for all positive integers n, Wd(m,n) ∈ K+

α if and
only if n < 2

(αm−2)(m−1) . Moreover, 2
(αm−2)(m−1) > 1, so such an n exists.

Therefore, we can use the same argument as in the proof of Theorem 3.7.
Thus, we may assume that m = 2

α + 1, and hence α = 2
m−1 . Since α < 2,

we may assume m ≥ 3. When m = 3, α = 1, and by Proposition 3.2 (2),
K+

1 = F, the class of all finite forests. This is not indivisible; for example,
let A = K2, take any B ∈ F, and let c be a proper 2-coloring of B (which
exists since B is bipartite). Then, there exists no monochromatic copy of A
in B.

Therefore, we may assume that m ≥ 4. Let G be Km with one edge
removed and let

n =

⌈
m− 1

m− 3

⌉
.

By Lemma 3.9, PW(G,n) ∩ K+
α = ∅ (but G ∈ K+

α ). Let A = G, fix
B ∈ K+

α , and suppose that any n-coloring c of B has a monochromatic copy
of A with respect to c. Let c be an n-coloring of B with the minimal number
of monochromatic copies of A. We follow the same argument as Theorem
3.7, changing the color c at a single vertex of some monochromatic copy of
A, which produces a subgraph of B isomorphic to one in PW(G,n). This
is a contradiction. Therefore, K+

α is not indivisible. �
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4. Classes of graphs with forbidden substructures

Before we examine graphs in particular, we begin by looking at classes
of arbitrary L-structures for some relational language L where each relation
symbol is at least binary (this covers, for example, classes of graphs or classes
of linear orders).

First, we consider the following lemma, whose proof is straightforward.

Lemma 4.1. Let L be a relational language where each relation symbol is
at least binary. For all irreflexive L-structures A and B, for all a∗ ∈ A and
functions h : A → B, the functions f : A → A[B] and g : B → A[B] given
by f(a) = (a, h(a)) and g(b) = (a∗, b) are embeddings.

This gives rise to a sufficient condition for indivisibility, which we will
later use to examine classes of graphs.

Theorem 4.2. Let L be a relational language where each relation symbol is
at least binary and let K be a class of irreflexive L-structures (note that the
language nor the structures need to be finite). If, for all A ∈ K, A[A] ∈ K,
then K is indivisible.

Proof. By Theorem 2.4, it suffices to check indivisibility for 2-colorings. Fix
A ∈ K and let B = A[A]. Fix any 2-coloring c of B. Suppose that, for
some a∗ ∈ A, c({a∗} × A) = {1}. Let f : A→ B be given by, for all a ∈ A,
f(a) = (a∗, a). By Lemma 4.1, f is an embedding of A into B. Thus, f is a
monochromatic copy of A in B.

Thus, we may assume that, for each a ∈ A, there exists ba ∈ A such that
c(a, ba) = 2. Let g : A→ B be given by g(a) = (a, ba). By Lemma 4.1, g is
an embedding of A into B. Thus, g is a monochromatic copy of A in B. �

Note that this also works for classes of infinite structures. For example,
we get the following corollary.

Corollary 4.3. Let κ be an infinite cardinal and let G<κ be the class of all
graphs of size less than κ. Then, G<κ is indivisible.

Proof. If A is a graph of size less than κ, then A[A] is a graph of size less
than κ. Thus, by Theorem 4.2, G<κ is indivisible. �

For the remainder of this section, we will let L be the language of graphs.
We will consider ForbG(A) for A a set of finite graphs. We begin with a
lemma that shows that graph classes that only forbid sufficiently large paths
or cycles are closed under lexicographic product.

Lemma 4.4. If F is either Pn for n ≥ 4 or Cn for n ≥ 5, and A,B ∈
ForbG(F ), then A[B] ∈ ForbG(F ).

Proof. Fix distinct (a1, b1), . . . , (an, bn) ∈ A[B]. Suppose that H, the in-
duced subgraph of A[B] on these vertices, is isomorphic to F . On the one
hand, if a1 = · · · = an, then the induced subgraph of B on {b1, . . . , bn}
is isomorphic to F , contrary to the fact that B ∈ ForbG(F ). On the other
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hand, if the ai’s are distinct, then the induced subgraph of A on {a1, . . . , an}
is isomorphic to F , contrary to the fact that A ∈ ForbG(F ). So neither of
these cases hold.

Fix distinct i0, i1 ∈ [n] such that ai0 = ai1 . Since F is connected, there
exists j0 ∈ [n] such that ai0 6= aj0 and (ai0 , aj0) ∈ EA.

If (bi0 , bi1) ∈ RB, then {(ai0 , bi0), (ai1 , bi1), (aj0 , bj0)} form a clique inA[B],
contrary to the fact that H ∼= F . If there exists i ∈ [n] with i 6= i0, i 6= i1,
and ai = ai0 , then the degree of (aj0 , bj0) in H is at least three, contrary to
the fact that H ∼= F . If there exists j ∈ [n] with j 6= j0 and (ai0 , aj) ∈ EA,
then the induced subgraph of A[B] on

{(ai0 , bi0), (aj0 , bj0), (ai1 , bi1), (aj , bj)}
contains C4 as a subgraph, contrary to the fact that H ∼= F .

Therefore, the degrees of (ai0 , bi0) and (ai1 , bi1) in H are each exactly
1. Clearly this is a contradiction if F = Cn. Moreover, if F = Pn with
n ≥ 4, then this is also a contradiction, since both (ai0 , bi0) and (ai1 , bi1) are
adjacent to a common vertex, (aj0 , bj0). �

ai0 aj0

bi0

bi1 bj0

The next lemma follows immediately from equation (2) and Proposition
2.13.

Lemma 4.5. Let F be a finite graph and suppose that, for all A,B ∈
ForbG(F ), A[B] ∈ ForbG(F ). Then, for all A,B ∈ ForbG(F ), A[B] ∈
ForbG(F ).

We put all of this together to get the following proposition about the
indivisibility of graphs which forbid certain substructures.

Proposition 4.6. Let

A ⊆ {Cn : n ≥ 5} ∪ {Pn : n ≥ 4} ∪
{
Cn : n ≥ 5

}
∪
{
Pn : n ≥ 4

}
.

Then, ForbG(A) is indivisible.

Proof. By Lemma 4.4 and Lemma 4.5, if F is either Cn or Cn for n ≥ 5 or Pn
or Pn for n ≥ 4, then ForbG(F ) is closed under lexicographic product. By
Lemma 2.7, ForbG(A) is closed under lexicographic product. By Theorem
4.2, ForbG(A) is indivisible. �

This proposition has a number of consequences, as many interesting classes
of graphs are of the form ForbG(A) for some such A. For example, consider
“cographs” (e.g., Exercise 8.1.3 of [23]).

Definition 4.7. A finite graph G is called a complement-reducible graph (or
cograph) if it forbids P4 as an induced subgraph.
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Corollary 4.8. The class of all finite cographs, ForbG(P4), is indivisible.

Next, consider “perfect graphs” (e.g., Definition 5.3.18 of [23]).

Definition 4.9. A finite graph G is called a perfect graph if, for every
induced subgraph H of G, the chromatic number of H is equal to the size
of largest clique of H.

Cographs are a subclass of perfect graphs, as can be observed by the
following forbidden induced subgraph characterization of perfect graphs.

Theorem 4.10 (Theorem 1.2 of [4]). A finite graph G is perfect if and only
if G forbids Cn and Cn for all odd n ≥ 5. That is, the class of all perfect
graphs is

ForbG

(
{Cn : n ≥ 5 odd} ∪

{
Cn : n ≥ 5 odd

})
.

Therefore, the following corollary holds.

Corollary 4.11. The class of all finite perfect graphs is indivisible.

Note that this is also a consequence of [19], which proves that, for all
finite graphs A and B, A[B] is perfect if and only if A and B are perfect.

Next, consider the class of “chordal graphs” (e.g., Definition 5.3.15 of
[23]), which is also a subclass of the perfect graphs.

Definition 4.12. A finite graph G is called a chordal graph if it forbids Cn
as an induced subgraph for all n ≥ 4.

Clearly Proposition 4.6 does not directly apply to the class of chordal
graphs, since C4-free graphs are not closed under lexicographic product (for
example, K2[N2] is isomorphic to C4). Therefore, we need a slightly different
argument to prove the following proposition.

Proposition 4.13. The class of all finite chordal graphs is indivisible.

We employ a characterization of chordal in terms of a “simplicial elimi-
nation ordering”.

Theorem 4.14 (Theorem 5.3.17 of [23]). A finite graph G is chordal if and
only if there is an ordering of the vertices of G, {a1, a2, . . . , an}, such that,
for all i ∈ [n], the neighbors of ai in the graph induced by {a1, . . . , ai} form
a complete graph.

In other words, G can be constructed by adding one vertex at a time,
ensuring that each new vertex is adjacent to a clique.

Next, consider the following lemma about creating a new chordal graph
from two existing chordal graphs by making the entirety of one graph adja-
cent to a clique in the other.

Lemma 4.15. If A and B are finite chordal graphs and C is a clique in A,
then the following graph G is chordal: G has vertex set AtB, EG∩A2 = EA,
EG ∩ B2 = EB, and, for each a ∈ A and b ∈ B, (a, b), (b, a) ∈ EG if and
only if a ∈ C.
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Proof. Suppose, towards a contradiction, G contains H ∼= Cn as an induced
subgraph for some n ≥ 4. Since A and B are chordal, H 6⊆ A and H 6⊆ B.
Since H is connected, there exists a ∈ H∩A and b ∈ H∩B that are adjacent.
Then, a ∈ C and a is adjacent to every vertex in B. If |H ∩B| > 2, then the
degree of a in H is at least 3, contrary to H ∼= Cn. Therefore, |H ∩B| ≤ 2.
Since |H| ≥ 4, we have |H ∩ A| ≥ 2. Since H \ {a} ∼= Pn−1, it is still
connected, hence there exists a′ ∈ (H \ {a}) ∩ A adjacent to b. However,
this means a′ ∈ C, hence a′ is adjacent to a. Then {a, a′, b} form a clique in
H, a contradiction. �

A
C

B

We use Theorem 4.14 and Lemma 4.15 to prove Proposition 4.13.

Proof of Proposition 4.13. By induction on the construction of A as in The-
orem 4.14. If A = ∅, then let B = ∅. If A is a single vertex, let B be a single
vertex.

Suppose now that A is constructed by creating a new vertex v and making
it adjacent to a clique C in some chordal graph A′ with |A′| ≥ 1. By
induction, there exists a chordal graph B′ such that, for all 2-colorings c′ of
B′, B′ has a monochromatic copy of A′ with respect to c′.

Let k = |C| and let C1, . . . , Cm enumerate all of the cliques in B′ of size
k (distinct, but not necessarily disjoint). Then, form a new graph B with
vertex set

B′ t {(i, a) : i ∈ [m], a ∈ A}.

The edge set of B will be given by:

• EB ∩ (B′)2 = EB
′
;

• ((i, a), (i′, a′)) ∈ EB if and only if i = i′ and (a, a′) ∈ A; and
• ((i, a), b) ∈ EB and (b, (i, a)) ∈ EB if and only if b ∈ Ci.

In other words, B is B′ together with, for each k-clique C ′ in B′, a copy of
A all of whose vertices are adjancent to each vertex of C ′. By Lemma 4.15
and induction, B is chordal. (Note that, if k = 0, then there is exactly one
clique of B′ of size 0, namely C1 = ∅. Therefore, B is a disjoint union of B′

and A.) We show that this B works.
Let c be a 2-coloring of B (which restricts to a 2-coloring of B′). By

assumption, there exists a monochromatic copy f of A′ in B′ with respect
to c; without loss of generality, suppose that c(f(A′)) = {1} (i.e., this copy
is colored 1). Then, f(C) = Ci for some i. If c((i, a)) = 2 for all a ∈ A,
then this would be a monochromatic copy of A in B with respect to c.
Otherwise, c((i, a)) = 1 for some a ∈ A, in which case f(A′) ∪ {(i, a)} is a
monochromatic copy of A in B with respect to c. �
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Not all graph classes that are characterized by forbidding induced sub-
graphs are indivisible, not even all subclasses of perfect graphs. For example,
we look at “threshold graphs” (e.g., [5]).

Definition 4.16. A threshold graph is a graph that is recursively defined
as follows:

• The empty graph is a threshold graph;
• if G is a threshold graph, then the addition of a single new isolated

vertex to G is a threshold graph; and
• if G is a threshold graph, then the addition of a single new vertex

adjacent to every vertex in G is a threshold graph.

Theorem 4.17 (Theorem 1 of [5]). A finite graph G is a threshold graph if
and only if G forbids P4, C4, and C4 as induced subgraphs.

As we alluded to earlier, it turns out that the class of threshold graphs is
not indivisible.

Proposition 4.18. The class of all finite threshold graphs is not indivisible.

Proof. Let A = P3, which is clearly a threshold graph.

A

For each non-empty threshold graph B, we recursively define a 2-coloring c
of B using the construction given in Definition 4.16 as follows:

• IfB is constructed from a threshold graphB′ by adding an additional
isolated vertex v and c′ is the 2-coloring on B′, define c : B → [2]
extending c′ given by setting c(v) = 1.
• IfB is constructed from a threshold graphB′ by adding an additional

vertex v adjacent to all vertices in B′ and c′ is the 2-coloring of B′,
define c : B → [2] extending c′ by setting c(v) = 2.

From the above construction, it is clear that, for any threshold graph B, no
two vertices of B that are colored 1 can be adjacent. Therefore, c−1({1})
does not contain a copy of A. On the other hand, any two vertices of B that
are colored 2 are adjacent. Therefore, c−1({2}) does not contain a copy of
A. Hence, there is no monochromatic copy of A in B with respect to c. �

Next, consider “split graphs” (e.g., Exercise 8.1.17 of [23]).

Definition 4.19. A finite graph G is called a split graph if its vertices can
be partitioned into two sets, A and B, where A is a clique and B is an
independent set.

Theorem 4.20 ([11]). A finite graph G is a split graph if and only if G
forbids C4, C5, and C4 as induced subgraphs.

It turns out that the class of split graphs is also not indivisible.

Proposition 4.21. The class of all finite split graphs is not indivisible.
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Proof. Let A = P3, which is clearly a split graph. Fix a split graph B.
Suppose that B = C tD, where C is a clique and D is a null graph. Then,
let c : B → [2] be given by

c(b) =

{
1 if b ∈ C,
2 if b ∈ D

.

Then there exists no monochromatic copy of A in B with respect to c, as A
cannot be embedded in either a complete graph or a null graph. �

Another subclass of the perfect graphs with a more complicated forbid-
den induced subgraph characterization is the class of “distance-hereditary
graphs” [14].

Definition 4.22 ([14]). A finite graph G is a distance-hereditary graph if,
for all connected induced subgraphs H of G, for all a, b ∈ H, the distance
between a and b in H is equal to the distance between a and b in G.

Theorem 4.23 ([14]). A finite graph G is a distance-hereditary graph if
and only if G forbids P5, Cn for all n ≥ 5, and the following two graphs:

However, we will make use of recursive characterization of the class of
distance-hereditary graphs.

Theorem 4.24 (Theorem 1 of [2]). A finite graph G is a distance-hereditary
graph if and only if G can be recursively constructed, starting with a single
vertex, by the following three operations:

• add a single vertex adjacent to exactly one vertex in G;
• replace any one vertex in G with N2; and
• replace any one vertex in G with K2.

(The second two operations are called “splitting a vertex” via “false twins”
and “true twins,” respectively.)

Using this construction will allow us to show that the class of all distance-
hereditary graphs is not indivisible.

Proposition 4.25. The class of all finite distance-hereditary graphs is not
indivisible.

Proof. Let A = P4, which is a distance-hereditary graph. For any distance-
hereditary graph B, we use the construction in Theorem 4.24 to recursively
define a 2-coloring of B. Suppose B′ is a distance-hereditary graph and c′

is the 2-coloring of B′ we have constructed so far. We define c : B → [2]
extending c′ as follows: If B is created by adding a vertex v adjacent to a
single vertex w ∈ B′, then define c(v) to be different from c′(w). If B is
created by duplicating a vertex w ∈ B′ (by either replacing it with K2 or
N2), then c assigns both new vertices the original color, c′(w).
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Toward a contradiction, suppose that there is a monochromatic copy of A
in B with respect to c. Halt the construction when the first monochromatic
copy of A in B with respect to c appears; let f be that copy and let H =
f(A). So H ∼= A = P4. This construction will not halt when we add a single
vertex adjacent to one other vertex, as those vertices will have different
colors with respect to c. Therefore, it must halt when we split a vertex;
call these new vertices a1 and a2. Clearly both a1, a2 ∈ H, as otherwise we
would have had a monochromatic copy of A earlier in the construction. By
construction a1 and a2 are adjacent to the same vertices in B. Let b1, b2 be
the other two vertices in H. Since H is connected, we must have that a1
and a2 are each adjacent to both b1 and b2. Therefore, H contains C4 as a
subgraph, contrary to the fact that H ∼= P4.

Thus, there is no monochromatic copy of A in B with respect to c. So
the class of all finite distance-hereditary graphs is not indivisible. �

To conclude this section, we summarize all of the results in the following
theorem and table.

Theorem 4.26. The following classes of finite graphs are indivisible:

• cographs;
• perfect graphs;
• chordal graphs.

The following classes of finite graphs are not indivisible:

• threshold graphs;
• split graphs;
• distance-hereditary graphs.

Proof. These are Corollaries 4.8 and 4.11 and Propositions 4.13, 4.18, 4.21,
and 4.25, respectively. �

Class Name Forbids Indivisible

Cographs P4 Yes

Perfect Graphs Cn and Cn for odd n ≥ 5 Yes
Chordal Graphs Cn for all n ≥ 4 Yes

Threshold Graphs P4, C4, and C4 No

Split Graphs C4, C5, and C4 No

Dist.-Her. Graphs P5, Cn for all n ≥ 5, Domino, Gem No

Note that, although the class of distance-hereditary graphs is a subclass
of the perfect graphs and a superclass of the cographs, both of which are
indivisible, it is not. Similarly, the class of cographs is indivisible despite
being a subclass of the distance-hereditary graphs and a superclass of the
threshold graphs, neither of which are indivisible.

5. The Amalgamation Property

Indivisibility was originally examined for structures instead of classes (see,
for example, [7]). When examining classes with the amalgamation property,
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one can ask about transfer of indivisibility from the class to the generic limit.
However, in the absence of the amalgamation property, no such generic limit
exists. This leads to the question: Which graph classes have the amalgama-
tion property? It turns out that very few graph classes do.

Throughout this section, let K be a class of finite graphs in the usual
language of graphs that is closed under isomorphism and has the hereditary
property.

The amalgamation property for classes of graphs was studied by A. H. Lach-
lan and R. Woodrow in [16]. In that paper, they prove the following theorem.

Theorem 5.1 (Theorem 2’ of [16]). If K has the amalgamation property,
P3 ∈ K, P3 ∈ K, Nm ∈ K for all positive integers m, and Kn ∈ K for some
positive integer n, then ForbG(Kn+1) ⊆ K.

Note that, by Proposition 2.11, if K has the amalgamation property,
P3 ∈ K, P3 ∈ K, Km ∈ K for all positive integers m, and Nn ∈ K for some
positive integer n, then ForbG(Nn+1) ⊆ K.

As a result, we obtain the following characterization for when a class of
finite graphs has the amalgamation property.

Corollary 5.2. Suppose K is a class of finite graphs with the hereditary
property and suppose that K contains graphs of arbitrarily large (finite) size.
Then, K has the amalgamation property if and only if K is equal to

• G;
• ForbG(Kn) for some n ≥ 2;
• ForbG(Nn) for some n ≥ 2;
• ForbG(P3);
• ForbG(P3);
• ForbG(P3,Kn) for some n ≥ 3;
• ForbG(P3,Kn) for some n ≥ 3;
• ForbG(P3, Nn) for some n ≥ 3; or
• ForbG(P3, Nn) for some n ≥ 3.

The following is essentially the argument presented in [16] preceding The-
orem 2’, with a bit more detail added to fit our situation.

Proof of Corollary 5.2. It is easy to verify that each of these classes has the
amalgamation property. For example, consider ForbG(P3,Kn) for some n ≥
3, which is the class of all graphs which are disjoint unions of complete graphs
of size at most n. Any amalgamation system A,B0, B1 ∈ ForbG(P3,Kn),
f0 : A → B0, and f1 : A → B1 can be completed by gluing cliques in B0

and B1 together if they contain the same clique in A via f0 and f1 (and
leaving them disjoint otherwise). This creates a graph C ∈ ForbG(P3,Kn)
(and associated embeddings g0 : B0 → C and g1 : B1 → C). Amalgamation
for the other classes can be similarly verified.

Conversely, suppose that K is a class of finite graphs with the amal-
gamation property. Let n be maximal such that Kn ∈ K and let m be
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maximal such that Nm ∈ K (and set these to ∞ if no such number exists).
If n,m < ∞, then Ramsey’s Theorem says that there is a bound on the
size of the graphs in K, contrary to assumption. So we may assume that
n = ∞ or m = ∞. Clearly n,m ≥ 1. If n = 1, then K contains only null
graphs of arbitrarily large size, so K = ForbG(K2). Similarly, if m = 1, then
K = ForbG(N2). So we may assume that n,m ≥ 2.

If P3 /∈ K, then, for each G ∈ K, any connected component of G must be a
clique. Thus, K contains only graphs with at most m connected components
where each component is a complete graph of size at most n. Since K
has the hereditary property and the amalgamation property, we must have
that any finite graph with at most m connected components where each
component is a complete graph of size at most n is contained in K. Thus,
K = ForbG(P3,Kn+1) if n < ∞, K = ForbG(P3, Nm+1) if m < ∞, and
K = ForbG(P3) otherwise. Similarly, if P3 /∈ K, then K = ForbG(P3,Kn+1)
if n <∞, K = ForbG(P3, Nm+1) if m <∞, and K = ForbG(P3) otherwise.
So we may assume that P3, P3 ∈ K.

Suppose that m = ∞. If n = ∞ then, by Theorem 5.1, ForbG(Ki) ⊆ K
for all i. However, for any G ∈ G, G ∈ ForbG(K|G|+1), hence G ∈ K. Thus,
K = G. If n <∞, then, by Theorem 5.1, ForbG(Kn+1) ⊆ K. On the other
hand, if G ∈ K, then, since K has the hereditary property and Kn+1 /∈ K,
there is no embedding of Kn+1 into G, so G ∈ ForbG(Kn+1). Thus, K =
ForbG(Kn+1). Similarly, if n = ∞ and m < ∞, then K = ForbG(Nm+1).
This exhausts all possibilities. �

Remark 5.3. As a result of Corollary 5.2, most of the graph classes con-
sidered in this paper do not have the amalgamation property. Certainly
nothing from Section 4. On the other hand, by Proposition 3.2, Kα has the
amalgamation property if and only if α > 3

2 (indeed, Kα = ForbG(P3,K3)

for α ∈ (32 , 2] and Kα = ForbG(K2) for α > 2). Similarly, K+
α has the

amalgamation property if and only if α ≥ 3
2 .

Indivisibility for the classes of graphs with the amalgamation property is
known or can be easily shown.

Proposition 5.4. The following are indivisible:

• G;
• ForbG(Kn) for some n ≥ 2;
• ForbG(Nn) for some n ≥ 2;
• ForbG(P3); and
• ForbG(P3).

Furthermore, the following are not indivisible:

• ForbG(P3,Kn) for some n ≥ 3;
• ForbG(P3,Kn) for some n ≥ 3;
• ForbG(P3, Nn) for some n ≥ 3; and
• ForbG(P3, Nn) for some n ≥ 3.
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Proof. The indivisibility of G can be found, for example, in [6]. It also
follows from Theorem 4.2. Indivisibility for ForbG(Kn) for all n ≥ 2 is in [6].
By Proposition 2.11, ForbG(Nn) is also indivisible for all n ≥ 2. Indivisibility
for ForbG(P3) follows from the Pigeonhole Principle and indivisibility of
ForbG(P3) then follows from Proposition 2.11.

To see that ForbG(P3,Kn) is not indivisible for n ≥ 3, take A = Kn−1,
which is clearly in ForbG(P3,Kn). For any B ∈ ForbG(P3,Kn), each com-
ponent of B must be a clique of size at most n− 1. For each component of
size at least two, choose one vertex to color 1 and color the rest 2. Color the
single-vertex components arbitrarily. Then, B contains no monochromatic
copy of A. By Proposition 2.11, ForbG(P3, Nn) is also not indivisible for
n ≥ 3.

To see that ForbG(P3, Nn) is not indivisible for n ≥ 3, take A = Nn−1,
which is clearly in ForbG(P3, Nn). For any B ∈ ForbG(P3, Nn), B must have
at most n− 1 components, each of which is a clique. Color one component
1 and the rest 2. Then, B contains no monochromatic copy of A. By
Proposition 2.11, ForbG(P3,Kn) is also not indivisible for n ≥ 3. �

6. Future Directions

We are interested in studying what other graph classes are indivisible.
For some graph classes, the answer is known, like planar graphs (see Ex-
ample 2.10 of [10]). For others, it follows from Proposition 4.6, as they
are classified by forbidding sufficiently large paths, cycles, or their comple-
ments. However, there are other classes of graphs for which indivisibility is
unknown.

We are also interested in studying generalizations of indivisibility. For ex-
ample, there is a notion of “strong substructure”≤ for classes of L-structures
K that generalizes the notion of substructure in the usual (model-theoretic)
sense (e.g., [1]). Replacing “substructure” with “strong substructure” gen-
eralizes notions like the amalgamation property. When (K,≤) has the amal-
gamation property, it has a generic limit akin to the Fräıssé limit [1]. The
classes Kα and K+

α each come with a strong substructure notion, ≤α and
≤+
α respectively, such that (Kα,≤α) and (K+

α ,≤+
α ) have the amalgamation

property (e.g., [3]), hence these have generic limits. If K is a class of L-
structures and ≤ is a strong notion of substructure, we can say that (K,≤)
is indivisible if, for all A ∈ K and positive integers k, there exists B ∈ K
such that, for all k-colorings c of B, there exists a monochromatic copy f of
A in B with respect to c such that f(A) ≤ B. We can ask which pairs (K,≤)
are indivisible. With respect to hereditarily α-sparse graphs, it is clear that
(Kα,≤α) is indivisible if and only if α > 2 and (K+

α ,≤+
α ) is indivisible if

and only if α ≥ 2. However, this is an interesting question for other pairs
(K,≤), including other graph classes.
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