
COMMUNITY STRUCTURE AND ITS APPLICATIONS
IN DYNAMIC COMPLEX NETWORKS

By

NAM P. NGUYEN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2013

c⃝ 2013 Nam P. Nguyen

2

ACKNOWLEDGMENTS

I would like express the deepest appreciation to my committee chair, Professor

My T. Thai for always being a great advisor of my Ph.D. journey. She continually and

convincingly conveyed a spirit of adventure in regard to research and scholarship, and

an excitement in regard to teaching. Her wisdom, support and advices have guided me

through all of my difficult moments, not only in doing research but also in my life. Without

her guidance and persistent help this dissertation would not have been possible. Also, I

am graceful to have excellent labmates who have provided extremely helpful resources

to my study.

I would like to thank my committee members, Professor Sanjay Ranka, Professor

Panos Pardalos, Professor Tamer Kahveci and Professor Prabhat Mishra who have

been very supportive to my dissertation. Their encouragement and advices have helped

me a lot not only in my Ph.D. study but also in my future career. Financial support for my

Ph.D. program was provided by the University of Florida, NSF CAREER Award Grant

number 0953284 and the DTRA Grant number HDTRA1-08-10.

3

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 3

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABSTRACT . 10

CHAPTER

1 INTRODUCTION . 11

1.1 Community Detection in Dynamic Complex Networks 11
1.2 Nonnegative Matrix Factorization for Community Detection 12
1.3 Applications of The Network Community Structure 14
1.4 The Identification of Stable Communities 15
1.5 The Assessment of Network Community Structure Vulnerability 16
1.6 Literature Review . 17
1.7 Dissertation outline . 22

2 NONOVERLAPPING COMMUNITY STRUCTURE DETECTION 25

2.1 Problem Definition . 25
2.2 Algorithm Description . 26

2.2.1 New Node . 28
2.2.2 New Edge . 30
2.2.3 Node Removal . 36
2.2.4 Edge Removal . 36

2.3 Experimental Results . 41
2.3.1 Results on Synthesized Networks 42
2.3.2 Results on Real World Traces . 44

3 OVERLAPPING COMMUNITY STRUCTURE DETECTION 51

3.1 Problem Formulation . 51
3.1.1 Basic Notations . 51
3.1.2 Dynamic Network Model . 51
3.1.3 Density Function . 52
3.1.4 Objective Function . 53
3.1.5 Problem Definition . 54

3.2 Basic Community Structure Detection . 54
3.2.1 Locating Local Communities . 55
3.2.2 Combining Overlapping Communities 58
3.2.3 Revisiting Unassigned Nodes . 60

3.3 Detecting Evolving Network Communities 61

4

3.3.1 Handling a New Node . 63
3.3.2 Handling a New Edge . 65
3.3.3 Removing an Existing Node . 67
3.3.4 Removing an Existing Edge . 68
3.3.5 Remarks . 70
3.3.6 Complexity . 70

3.4 Experimental Results . 71
3.4.1 Choosing the Overlapping Threshold β 73
3.4.2 Reference to Static Methods . 74
3.4.3 Reference to Other Dynamic Methods 75

4 COMMUNITY STRUCTURE DETECTION USING NONNEGATIVE MATRIX
FACTORIZATION . 79

4.1 Problem Definition and Properties . 79
4.1.1 Motivation for NMF in Community Detection 79
4.1.2 Problem Definitions . 81
4.1.3 Properties of iSNMF and iANMF factorizations 81

4.2 The Update Rule for iSNMF . 84
4.2.1 Multiplicative Update Rule . 84
4.2.2 Quasi-Newton Method for iSNMF 88

4.3 Update Rules for iANMF . 89
4.3.1 Multiplicative Update Rules . 89

4.4 Experimental Results . 94
4.4.1 Empirical Results on Synthesized Networks 95
4.4.2 Results on Real Networks . 100

5 SOCIAL-AWARE ROUTING STRATEGIES IN MOBILE AD-HOC NETWORKS 102

5.1 A Message Forwarding and Routing Strategy Employing QCA 102
5.1.1 Setup . 103
5.1.2 Results . 105

5.2 A Message Forwarding and Routing Strategy Employing AFOCS 106
5.2.1 Message Forwarding Strategy . 106
5.2.2 Setup . 107
5.2.3 Results . 109

6 SOLUTIONS FOR WORM CONTAINMENT IN ONLINE SOCIAL NETWORKS 111

6.1 An Application of QCA in Containing Worms in OSNs 113
6.1.1 Setup . 113
6.1.2 Results . 115

6.2 Containing Worms with Overlapping Communities Detected by AFOCS . 118
6.2.1 Setup . 118
6.2.2 Results . 119

5

7 STABLE COMMUNITY DETECTION IN ONLINE SOCIAL NETWORKS 122

7.1 Basic Notations . 123
7.2 Link Stability Estimation . 124

7.2.1 Link Reciprocity Prediction . 125
7.2.2 Link Stability Estimation . 127

7.3 Stable Community Detection . 129
7.3.1 Lumped Markov Chain . 129
7.3.2 The Connection to Network Topology 131
7.3.3 Detecting Communities . 132

7.3.3.1 Formulation . 132
7.3.3.2 Resolution limit analysis 133
7.3.3.3 Connection to stability estimation 134
7.3.3.4 A greedy algorithm for SCD problem 135

7.4 Experimental Results . 137
7.4.1 Datasets . 137
7.4.2 Metric . 139
7.4.3 Effect of Link Stability Estimation 139
7.4.4 General Community Structure Detection 141
7.4.5 Results on Stable Community Detection 142

7.5 Conclusion . 144

8 ASSESSING NETWORK COMMUNITY STRUCTURE VULNERABILITY . . . 145

8.1 Introduction . 145
8.2 Problem Definition . 146
8.3 Analysis of NMI Measure . 148

8.3.1 NMI Formulation . 148
8.3.2 Minimizing NMI in a Disjoint Community Structure 150

8.3.2.1 Minimizing NMI within a community 150
8.3.2.2 Minimizing NMI in a general disjoint community structure 151

8.3.3 Minimizing NMI in an Overlapped Community Structure 153
8.4 A Solution to CSV Problem . 154
8.5 Experimental Results . 158

8.5.1 Results on Synthesized Networks 161
8.5.1.1 Solution quality . 161
8.5.1.2 The Number of Communities and Their Sizes 163

8.5.2 Results on Real World Traces . 164
8.6 An Application in DTNs . 167

9 CONCLUSIONS . 172

REFERENCES . 173

BIOGRAPHICAL SKETCH . 184

6

LIST OF TABLES

Table page

8-1 Statistic of social traces . 164

7

LIST OF FIGURES

Figure page

1-1 The general framework for our adaptive community detection algorithm A. . . . 13

1-2 The classification of community detection algorithms in complex networks. . . . 17

2-1 Possible behaviors of the network community structure during evolution. 28

2-2 NMI scores on synthesized networks with known communities 41

2-3 Modularity values on synthesized networks with known communities 42

2-4 Simulation results on Enron email network. 45

2-5 Simulation results on arXiv e-print citation network. 46

2-6 Simulation results on Facebook social network. 47

3-1 Overlapped v.s. non-overlapped community structures. 52

3-2 Locating and merging local communities. 55

3-3 A possible scenario when a new node is introduced. 63

3-4 Possible scenarios when a new edge is introduced. 65

3-5 Possible scenarios when an existing node is removed. 67

3-6 Possible scenarios when an existing edge is removed. 69

3-7 NMI scores for different values of β. N = 5000 (top), N = 1000 (bottom), µ =
0.1 (left), µ = 0.3 (right). 71

3-8 Comparison among AFOCS, COPRA and CFinder methods. N = 5000 (top),
N = 1000 (bottom), µ = 0.1 (left), µ = 0.3 (right). 72

3-9 Comparison among AFOCS, iLCD, FacetNet and OSLOM dynamic methods. . 76

3-10 The number of communities obtained by AFOCS, iLCD, FacetNet and OSLOM
and OSLOMs methods. 77

4-1 An illustrative example motivating NMF in community detection 80

4-2 The partial derivative matrix of HHT with respect to Hab. 85

4-3 The partial derivative matrix of HSHT with respect to Hab. 91

4-4 Normalized Mutual Information scores on synthesized networks 96

4-5 Number of communities on synthesized networks 97

8

4-6 Running Time on synthesized networks . 99

4-7 The number of communities, Internal density and Overlapping ratio of Enron
email and Facebook-like datasets . 100

5-1 Experimental results on the Reality Mining data set 104

5-2 Experimental results on the Reality Mining data set 108

6-1 A general worm containment strategy. 112

6-2 Infection rates on static network with k = 150 clusters 114

6-3 Infection rates on dynamic network with k = 200 clusters 115

6-4 OverCom patching scheme. 119

6-5 Infection rates between four methods. 120

7-1 Illustrations of stability function. 128

7-2 Results on synthesized networks with different community criteria. 138

7-3 Performance of SCD in detecting stable communities on real social traces. . . 140

8-1 Comparison among different node selection strategies on synthesized networks
with N = 2500 nodes . 159

8-2 Comparison among different node selection strategies on synthesized networks
with N = 5000 nodes . 160

8-3 Results obtained by AFOCS on networks with N = 2500 nodes and N = 2500
nodes. 162

8-4 NMI scores on Reality mining data, Foursquare and Facebook networks obtained
by AFOCS (k = 50...1000) . 165

8-5 Simulation results on HAGGLE dataset. 169

8-6 NMI measure on Haggle dataset. 170

9

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

COMMUNITY STRUCTURE AND ITS APPLICATIONS
IN DYNAMIC COMPLEX NETWORKS

By

Nam P. Nguyen

May 2013

Chair: My T. Thai
Major: Computer Engineering

In this dissertation, we focus on analyzing and understanding the organizational

principals, assessing the structural vulnerability as well as exploring practical applications

of dynamic complex networks. In particular, we propose two adaptive frameworks

for identifying the nonoverlapping and overlapping community structure in dynamic

networks. Our approaches have not only the power of quickly and efficiently updating

the network communities, but also the ability of tracing the evolution of those communities

over time. We also suggest a detection method based on nonnegative matrix factorization

which can work on weighted and directed networks. Consequently, we study the

discovery of stable communities in the networks, i.e., communities which are tightly

connected and remain wealthy even over a long period of time. Furthermore, we

investigate on the structural vulnerability of the network community structure via

identifying key nodes that play an important role in maintaining the normal function

of the whole system. This is a new research direction on the cyber-infrastructure that

we have recently introduced. To certify the effectiveness of our suggested frameworks

and algorithms, we extensively test them on not only synthesized networks but also

on real-world dynamic traces. Finally, we demonstrate the wide applicability of our

algorithms via realistic applications, such as the limiting misinformation spread in Online

Social Networks as well as the social-based forwarding and routing strategy and worm

containment in Mobile networks.

10

CHAPTER 1
INTRODUCTION

1.1 Community Detection in Dynamic Complex Networks

Many complex systems in reality exhibit the property of containing community

structure [1][2], i.e., they naturally divide into groups of vertices with denser connections

inside each group and fewer connections crossing groups, where vertices and

connections represent network users and their social interactions, respectively.

Members in each community of a social network usually share things in common such

as interests in photography, movies, music or discussion topics and thus, they tend to

interact more frequently with each other than with members outside of their community.

Community detection in a network is the gathering of network vertices into groups in

such a way that nodes in each group are densely connected inside and sparser outside.

It is noteworthy to differentiate between community detection and graph clustering.

These two problems share the same objective of partitioning network nodes into groups;

however, the number of clusters is predefined or given as part of the input in graph

clustering whereas the number of communities is typically unknown in community

detection. Detecting communities in a network provides us meaningful insights to

its internal structure as well as its organization principles. Furthermore, knowing the

structure of network communities could also provide us more helpful points of view to

some uncovered parts of the network, thus helps in preventing potential networking

diseases such as virus or worm propagation. Studies on community detection on static

networks can be found in an excellent survey [3] as well as in the work of [4][5][6][7] and

references therein.

Real-world complex networks, however, are not always static. In fact, most of

complex systems in reality (such as Facebook, Bebo and Twitter in OSNs) evolve and

witness an expand in size and space as their users increase, thus lend themselves to

the field of dynamic networks. A dynamic network is a special type of evolving complex

11

networks in which changes are frequently introduced over time. In the sense of an online

social network, such as Facebook, Twitter or Flickr, changes are usually introduced by

users joining in or withdrawing from one or more groups or communities, by friends and

friends connecting together, or by new people making friend with each other. Any of

these events seems to have a little effect to a local structure of the network on one hand;

the dynamics of the network over a long period of time, on the other hand, may lead to

a significant transformation of the network community structure, thus raises a natural

need of reidentification. However, the rapidly and unpredictably changing topology of a

dynamic social network makes it an extremely complicated yet challenging problem.

Although one can possibly run any of the static community detection methods,

which are widely available [4][5][6][8], to find the new community structure whenever the

network is updated, he may encounter some disadvantages that cannot be neglected:

(1) the long running time of a specific static method on large networks (2) the trap of

local optima and (3) the almost same reaction to a small change to some local part

of the network. A better, much efficient and less time consuming way to accomplish

this expensive task is to adaptively update the network communities from the previous

known structures, which helps to avoid the hassle of recomputing from scratch. This

adaptive approach is the main focus of our study in this paper. In Figure 1− 1, we briefly

generalize the idea of dynamic network community structure adaptation. Here, the

network evolves from time t to t + 1 under the change �Gt . The adaptive algorithm A

quickly finds the new community structure C(Gt+1) based on the previous structure C(Gt)

together with the changes �Gt .

1.2 Nonnegative Matrix Factorization for Community Detection

Community identification on complex networks is a well-established field and many

efficient graph-based methods have been introduced in the literature (see [9] for an

excellent survey). Unfortunately, these methods expose the strong dependence on some

local parts of the network topology as well as the implicit meaning and interpretation

12

:

:

Figure 1-1. The general framework for our adaptive community detection algorithm A.

from the detected overlapping communities. Recently, NMF-based algorithms for

detecting network communities have gained great attention due to its meaningful

interpretation [10]. In general, an NMF problem asks for, given a nonnegative matrix

X ∈ Rm×m and a number k ≪ min{m, n}, nonnegative matrices W ∈ Rm×k and

H ∈ Rk×n such that ||X −WH|| is minimized, where || · || is a cost function (usually

the Frobenius distance or I-divergence). One notable property of NMF is its close

relationship to K-mean clustering and graph partitioning [11][12], which also closely

relates to community identification.

A few attempts have been suggested on this line of method. Lin et al proposed

MetaFac [13], a NMF-based method for extracting community structure through

relational hypergraphs. This method, however, is not capable for identifying overlapped

structures. In [14], Prorakis et al. recently proposed an approach for finding overlapping

communities using a Bayesian NMF based on hyperparameters. This method has

the advantages of automatically determining the number of communities and not

suffering from the resolution limit. Unfortunately, its built-in estimate of the number of

communities could mislead the factorization to return a bad solution. In [15], Wang

et al. proposed NMF methods on the Frobenius norm with the capability of extracting

overlapped structures. However, we find these approaches do not appear to perform

well on weighted directed networks as shown in the experiments.

To overcome the above limitations, we introduce two NMF approaches, namely

iSNMF and iANMF, for effectively identifying social network communities with meaningful

13

interpretations. In particular, we are interested in approximating X ≈ HSHT since

this factorization provides us H as the community indicator matrix and S as the

community-interaction strength matrix, respectively. This factorization, as a result, nicely

reflects the overlap of network communities and promises a meaningful community

interpretation that is independent of the network topology.

1.3 Applications of The Network Community Structure

Detecting community structure of a dynamic social network is of considerable uses.

To give a sense of it, consider the routing problem in communication network where

nodes and links present people and mobile communications, respectively. Due to nodes

mobility and unstable links properties of the network, designing an efficient routing

scheme is extremely challenging. However, since people have a natural tendency

to form groups of communication, there exist groups of nodes which are densely

connected inside than outside in the underlying MANET as a reflection, and therefore,

forms community structure in that MANET. An effective routing algorithm, as soon as

it discovers the network community structure, can directly route or forward messages

to nodes in the same (or to the related) community as the destination. By doing this

way, we can avoid unnecessary messages forwarding through nodes in different

communities, thus can lower down the number of duplicate messages as well as reduce

the overhead information, which are essential in MANETs.

Another great example includes the worm containment in cellular networks [16],

or in OSNs [17][18]. Nowadays, many social applications such as Facebook, Twitter

and FourSquare, are able to run on open-API enabled mobile devices like PDAs and

Iphones. However, if such an application is infected with malicious software, such as

worms or viruses, this openness will also make it easier for their propagation. A possible

solution to prevent worms from spreading out wider is to send patches to critical users

and let them redistribute to the others. Intuitively, the smaller the set of important users

for sending patches, the better. But how can we effectively choose that set of minimal

14

size? This is where community structure comes into the picture and helps. In particular,

we show that selecting users in the boundaries of the overlapped nodes gives a tighter

and more efficient set of influential users, thus significantly lowers the number of sent

patches as well as overhead information, which are essential in cellular networks and

OSNs.

1.4 The Identification of Stable Communities

OSNs in reality are highly dynamic as social interactions on them tend to come and

go quickly. Consequently, their communities are also dynamical and evolve heavily as

the networks change over time. However, Palla et al. observe in their seminal work that

some communities in social networks are tightly connected and remain wealthy even

over a long period of time [19]. The authors also point out that large-size communities

with a high internal densities and less external distractions tend to remain stable during

the network evolution, which intuitively agree with the findings reported in [20]. These

observations reassemble the concept of stable communities in OSNs. For example,

stable communities on Facebook can be visualized as groups of users who devoted

themselves to one particular interest such as movie, music or photography. Likewise,

a stable community in Twitter can be illustrated via a group of users who may follow

many but only loyal to a specific celebrity. In a different perspective, stable communities

in a citation network may refer to well-established research topics in the field whereas

unstable communities may represent topical or recently arising research directions.

The discovery of these stable communities, as a consequence, will provide us

valuable insights into the core properties and characteristics of not only each community

but also of the network as a whole. This knowledge can further benefit information

retrieval in OSNs as searches can be redirected to stable communities sharing the

most similar characteristics to the queries for more meaningful answers. For instance,

the search for well-established research topics in a citation network can be mined

more effectively when one looks at its stable rather than unstable communities, as

15

discussed above. However, the large-scale and nonreciprocal topologies of OSNs in

reality make the detection of stable community structure an extremely challenging yet

topical problem.

1.5 The Assessment of Network Community Structure Vulnerability

Complex systems, despite their diversity in physical infrastructures and underlying

interactions, expose to be extremely vulnerable under node attacks. In some scenarios,

the failures of only a few key nodes are enough to bring the whole network operation

down to its knees [21]. More importantly, this vulnerability can further be propagated

to a wider population, leading to a much more devastating consequence. In order to

develop a comprehensive understanding on this type of attack, it is therefore important

to understand not only the impact of nodes’ failures on the network components but also

the inner and interdependency among those components [22]. Particularly, it is crucial

to explore how the failure of a single node, or a set of nodes in general, can significantly

change the structure of the network components as well as how these components

would affect each other in cases of attacks. However, the large scale and dynamical

properties of complex systems in practice make this a complicated problem.

To tackle this problem, we introduce the use of network modules to study both

the impact of nodes’s failures and the network component interdependency. There

are several reasons and benefits behind this approach. First of all, investigating the

interdependencies based on the topology of the underlying network structures is a major

aspect that must be considered to understand the behavior of structural vulnerability

[22]. Secondly, most complex networks commonly exhibit modular property, or in other

words, they exhibit to contain community structure in their underlying organizations.

That is, the network nodes can be gathered into groups in such a way that each group

is densely connected internally and sparsely connected externally [23][24]. Nodes in

each community usually share similar functions and characteristics that distinguish

themselves from the others. In a broader view, communities displays the whole network

16

Static Algorithms Dynamic Algorithms

Disjoint CS

Overlapping CS

Weighted NW

Unweighted NW

Weighted NW

Unweighted NW

Undirected NW Directed NW Undirected NW Directed NW

1

5

9

13

2 3 4

6

10

14

7

11

15

8

12

16

Figure 1-2. The classification of community detection algorithms in complex networks.

structure as a compact and more understandable level where a community may

represent an entity or a functional group in the system. At this level, element failures

in one community can have a profound impact which can consequently lead to changes

of other communities. Therefore, identifying network elements that are essential to its

community structure is a fundamental and extremely important issue. To the best of our

knowledge, this research direction has not been addressed so far in the literature.

1.6 Literature Review

Community detection in dynamic networks

Community detection in complex networks is a well established field and a

tremendous number of identification methods has been proposed in the literature.

Some notable approach directions include classical graph clustering algorithms [25][26],

dynamic approaches [27], modularity optimization methods [24], statistical inference

[28] or random walk for community detection [29] (see [9] and references therein for an

excellent survey).

In a general view, community structure detection algorithms for complex network

can be classified in different ways: either by nonoverlapping or overlapping detection

17

algorithms, by static or dynamic algorithms, or by algorithms for directed and undirected

networks, etc. Figure 1-2 describes a details classification of 16 different types of

identification algorithms.

Community detection on static networks has attracted a lot of attentions and many

efficient methods have been proposed for this type of networks. Detecting community

structure on dynamic networks, however, has so far been an untrodden area. A recent

work of Palla et al. [2] proposed an innovative method for detecting communities on

dynamic networks based on the k-clique percolation technique. This approach can

detect overlapping communities; however, it is time consuming, especially on large

scale networks. Another recent work of Zhang et al. [30] proposed a detection method

based on contradicting the network topology and the topology-based propinquity, where

propinquity is the probability of a pair of nodes involved in a community. A work in [31]

presented a parameter-free methodology for detecting clusters on time-evolving graphs

based on mutual information and entropy functions of Information Theory. Hui et al. [32]

proposed a distributed method for community detection in which modularity was used

as a measure instead of objective function. A part from that, [33] attempted to track the

evolving of communities over time, using a few static network snapshots.

In [34], the authors present a framework for identifying dynamic communities with

a constant factor approximation. However, this method does not seem to make sense

on real-world social networks since it requires some predefined penalty costs which are

generally unknown on dynamic networks. A recent work [35], Thang et al. proposed a

social-aware routing strategy in MANETs which also makes uses of a modularity-based

procedure name MIEN for quickly updating the network structure. In particular, MIEN

tries to compose and decompose network modules in order to keep up with the changes

and uses fast modularity algorithm [4] to update the network modules. However, this

method performs slowly on large scale dynamic networks due to the high complexity of

[4].

18

In [36], Lin et al. proposed FacetNet, a framework for analyzing communities in

dynamic networks based on the optimization of snapshot costs. FacetNet is guaranteed

to converge to a local optimal solution; however, its convergence speed is slow and

its input asks for the number of network communities which are usually unknown

in practice. In [37], Duan et al. proposed Stream-Group, an incremental method

to solve the community mining and detect the change points in weighted dynamic

graphs. This method is modularity-based thus may inherit the resolution limit while

discovering network communities. In another attempt, Kim et al. [38] suggested a

particle-and-density based clustering method for dynamic networks, based on the

extended modularity and the concepts of nano-community and l-quasi-clique-by-clique.

Apart from that, the work of Cazabet et al. [39] proposed iLCD method to find the

overlapping network communities by adding edges and then merging similar ones.

However, this model might not be sufficient in consideration with the dynamic behaviors

of the network when new nodes are introduced or removed, or when existing edges

are removed from the network. In [40], the author presented OSLOM, a framework for

testing the statistical significance of a cluster with respect to a global null model (e.g., a

random graph). To expand a community, OSLOM locally computes the value r for each

neighbor node and tries to include that node into the current community.

Nonnegative matrix factorization for community detection

Community detection on complex networks is a mature research area and besides

NMF-based algorithms, many effective graph-based or topology-based algorithms

have been proposed for this purpose. In general, detection methods can be classified

into non-overlapping (disjoint) and overlapping algorithms. Traditional non-overlapping

algorithms [24][8][41] may return good community identification results, however are

not able to reveal the overlapped network structures, particularly on social networks.

On the other category, algorithms for graph-based and topological-based detection

of overlapping communities have also been proposed in the literature. Most of them

19

are based on the clique-percolation [42] or clique extension [43] techniques, on the

extended modularity [44][45], on a specific fitness function [46], on label propagation

[47], or link-based technique [48]. See [9] and references therein for an excellent survey

on those detection methods.

Although the success of these aforementioned algorithms have been theoretically

and empirically verified, they still expose the following limitations: (1) The strong

dependence on some local parts of the network topology, e.g., the clique-percolation

method depends on some dense subnetworks in order to percolate, a link-based

technique relies on potential links with highest degrees, a modularity-based technique

depends on the network hierarchy in order to maximize modularity, etc, and (2) The

implicit meaning and interpretation from the detected overlapping communities, e.g.,

what is the contribution of an overlapped node to these percolated-cliques or why would

it even be there? These shortcomings of these methods drive the need for a better

approach with a more meaningful interpretation.

Stable community detection

The discovery of stable communities, on the contrary, is still an untrodden area

with only a few attempts has been suggested [49][50][51]. This special property of

network communities was perhaps first observed by Palla et al. in his seminal work [19],

where they point out that tight-knit communities with high internal densities and less

external distractions tend to remain strong over time, thereby reassembles the concept

of community stability. Delvenne et al. [49] extend this general concept to proposed

an measure, called “stability of the clustering r(t,H)”, to quantify how stable a given

cluster (or community structure) H is at a specific time step t based on the Markov

Autocovariance model. Under this notation, a cluster H is stable at time t if a high value

of r(t,H) is observed. This quantity, instead, is more appropriate for verification rather

than identification of stable network communities since it requires the specification of

time step t a prior.

20

In a different approach, Lancichinetti et al. [50] investigate on the consensus of

community detection methods. The authors report that, given a particular algorithm

A, the consensus on communities found by A after multiple runs dramatically improve

the quality of the detection, henceforth suggest that those communities are candidates

for stable structures. This is a very interesting approach, however, might encounter

some disadvantages of (1) the expensive computational cost and time consuming,

and (2) the convergence of the whole iterative process is not guaranteed. In a

recent attempt, Yanhua et al. [51] utilize the concept of mutual links and suggest an

spectral-clustering-based identification method that tries to maximize the total mutual

connections in order to find stable communities. However, there are possibilities that

some mutual links are of low magnitudes, and thus, do not significantly contribute to the

overall stability at the community level.

Structural vulnerability assessment of community structure

Community structure and complex network vulnerability are the two major and

well-developed areas of networking research. Surveys on community structure detection

algorithms as well as methods for assessing network vulnerabilities can be found in the

work of Fortunatos et. al. [9], and Grubesic et. al. [52], respectively. However, assessing

the vulnerability of network community structure has so far been an untrodden area.

A large body of work has been devoted to find the node roles within a community by

a link-based technique together with a modification of node degree [53], by using the

spectrum of the graph [54], by using a within-module degree and their participation

coefficient [55], or by the detection of key nodes, overlapping communities and “date”

and “party” hubs [56]. However, none of these approaches discuss how the community

structure would change in the failure of those important nodes, especially in terms of

NMI measure.

The vulnerability of network function and structure has been examined under the

node centrality metrics, such as high degree and betweeness centrality, as well as

21

under the average shortest path which tries to signify the lengths of shortest distances

between node pairs [52], under the pairwise connectivity metric whose goal aims to

break the network’s pairwise connectivity down to a certain level [21], or under the

available number of compromised s − t flows [57], etc. However, there is an even more

crucial risk that could dramatically affect the normal network functionality that has not

been addressed so far: the transformation or restruction of the network community

structure. Due to its vital role in the network, any significant restruction or transformation

of the community structure, resulted from important node removal, can potentially

change the entire network organization and consequently lead to a malfunction or

unpredictable corruption of the whole network.

1.7 Dissertation outline

In chapter 2, we propose QCA, a fast and adaptive method for efficiently identifying

the nonoverlapping community structure of a dynamic social network. Our approach

takes into account the discovered structures and processes on network changes

only, thus significantly reduces computational cost and processing time. We study the

dynamics of a social network and prove theoretical results regarding its communities’

behaviors over time, which are the bases of our method. We extensively evaluate our

algorithms on both synthesized and real dynamic social traces. Experimental results

show that QCA achieves not only competitive modularity scores but also high quality

community structures in a timely manner. We apply QCA method to worm containment

problem in OSNs. Simulation results show that QCA outperforms current available

methods and confirm its applicability in social network problems.

In chapter 3, we suggest AFOCS, a two-phase adaptive framework for not only

detecting and updating the overlapping network communities but also tracing their

evolution over time. Theoretical analyses show AFOCS partially achieves more than

74% the internal density of the optimal solution. Second, we evaluate AFOCS on

both synthesized and real traces in comparison to both the state-of-the-art and the

22

most popular static detection methods COPRA and CFinder, as well as to recent

adaptive methods FacetNet, iLCD and OSLOM. Empirical results show that AFOCS

achieves both competitively results and high quality community structures in a timely

manner. Finally, with AFOCS, we suggest a community based forwarding strategy for

communication networks that reduces up to 11x overhead information while maintaining

competitively delivery time and ratio. We also propose a new social-aware patching

scheme for containing worms in OSNs, which helps reducing up to 7x the infection rates

on Facebook dataset.

We analyze two NMF approaches in chapter 4, namely iSNMF and iANMF, for

effectively identifying social network communities with meaningful interpretations.

In particular, we are interested in approximating X ≈ HSHT since this factorization

provides us H as the foundation feature matrix and S as the feature interaction

matrix. Alternatively, H and S can also be thought of as community indicator and

inter-community strength matrices whose row elements can further be interpreted

as probabilities of nodes belonging to different communities. This factorization, as a

result, nicely reflects the overlap of network communities and promises a meaningful

community interpretation that is independent of the network topology.

In an application perspective, we illustrate the practical applications of the network

community structure via two emerging problems on social and mobile computing,

namely the Worm spread containment problem on online social networks (chapter

5) and the forwarding and routing strategy (chapter 6) on mobile networks. We

demonstrate that methods and strategies employing QCA and FOCS as community

detection cores obtain a significant improvement in term of performance and solution

quality. These realistic applications brighten the wide applicability of the network

community structure many problems enabled my complex networks.

In chapter 7, we suggest an estimation which provides helpful insights into the

stability of links in the input network. Based on that, we propose SCD - a framework

23

to identify community structure in directional OSNs with the advantage of community

stability. We next explore an essential connection between the persistence probability

of a community at the stationary distribution and its local topology, which is the

fundamental mathematical theory to support the SCD framework. To certify the

efficiency of our approach, we extensively test SCD on both synthesized datasets

with embedded communities and real-world social traces, including NetHEPT and

NetHEPT WC collaboration networks as well as Facebook social networks, in reference

to the consensus of other state-of-the-art detection methods. Highly competitive

empirical results confirm the quality and efficiency of SCD on identifying stable

communities in OSNs.

In chapter 8, we introduce CSV problem to assess the impact of nodes’ failures

on the network community structure. To the best of our knowledge, this is the first

attempt in this line of research. We analyze possible conditions that can lead to the

minimization of NMI on network community structures. We suggest the concept

of generating edges of a community and provide an optimal solution for finding a

MGES. We propose genEdge, a node selection strategy for CSV based on the MGES

solution. We conducted experiments on both synthesized data with known community

structures and real world traces. Empirical results reveal that genEdge outperforms

other node selection strategies in terms of solution quality as well as in reference to

different underlying community detection algorithms. In an application perspective, we

demonstrate the critical importance of CSV via the forwarding and routing strategies

in delay tolerant networks (DTNs), where the failures of some important devices

significantly degrade the entire system’s performance.

Finally, we summary our contributions and conclude the dissertation in chapter 9.

24

CHAPTER 2
NONOVERLAPPING COMMUNITY STRUCTURE DETECTION

In this chapter, we present QCA, our proposed algorithms for detecting nonoverlapping

community structure in a dynamic complex network. In the following sections, we first

introduce the preliminaries in section 2.1 and then describe our QCA method in detail

in section 2.2. Finally, the empirical evaluations of QCA on both synthesized and real

datasets are presented in section 2.3.

2.1 Problem Definition

We first present the notations, objective function as well as the dynamic graph

model representing a social network that we will use throughout this section.

(Notation) Let G = (V ,E) be an undirected unweighted graph with N nodes and

M links representing a social network. Let C = {C1,C2, ..,Ck} denote a collection of

disjoint communities, where Ci ∈ C is a community of G . For each vertex u, denote by

du, C(u) and NC(u) its degree, the community containing u and the set of its adjacent

communities. Furthermore, for any S ⊆ V , let mS , dS and euS be the number of links

inside S , the total degree of vertices in S and the number of connections from u to S ,

respectively. The pairs of terms community and module; node and vertex as well as

edge and link and are used interchangeably.

(Dynamic social network) Let G s = (V s ,E s) be a time dependent network

snapshot recorded at time s. Denote by �V s and �E s the sets of vertices and links

to be introduced (or removed) at time s and let �G s = (�V s , �E s) denote the change in

term of the whole network. The next network snapshot G s+1 is the current one together

with changes, i.e., G s+1 = G s ∪ �G s . A dynamic network G is a sequence of network

snapshots evolving over time: G = (G 0,G 1, ..,G s).

(Objective function) In order to quantify the goodness of a network community

structure, we take into account the most widely accepted measure called modularity Q

25

[6], which is defined as:

Q =
∑
C∈C

(mC

M
− d2

C

4M2

)
.

Basically, Q is the fraction of all links within communities subtracts the expected value

of the same quantity in a graph whose nodes have the same degrees but links are

distributed randomly, and the higher modularity Q, the better network community

structure is. Therefore, our objective is to find a community assignment for each

vertex in the network such that Q is maximized. Modularity, just like other quality

measurements for community identifications, has some certain disadvantages such as

its non-locality and scaling behavior [7], or resolution limit [58]. However, it is still very

well considered due to its robustness and usefulness that closely agree with intuition on

a wide range of real world networks.

Problem Definition: Given a dynamic social network G = (G 0,G 1, ..,G s) where G 0 is

the original network and G 1, G 2,.., G s are the network snapshots obtained through �G 1,

�G 2,.., �G s , we need to devise an adaptive algorithm to efficiently detect and identify

the network community structure at any time point utilizing the information from the

previous snapshots as well as tracing the evolution of the network community structure.

2.2 Algorithm Description

Let us first discuss how changes to the evolving network topology affect the

structure of its communities. We use the term intra-community links to denote edges

whose two endpoints belong to the same community, and the term inter-community links

to denote those with endpoints connecting different communities. For each community

C , the connections linking C with other communities are much fewer than those within C

itself, i.e., nodes in C are densely connected inside and less densely connected outside.

Intuitively, adding intra-community links inside or removing inter-community links

between communities of G will strengthen those communities and make the structure of

G more clear. Vice versa, removing intra-community links and inserting inter-community

links will loosen the structure of G . The community updating process, as a result, is

26

challenging since an insignificant change in the network topology can possibly lead to an

unexpected transformation of its community structure.

We will discuss in detail possible behaviors of dynamic network communities in

Figure 2-1. 2-1A: New edge (u, v): u and v are first checked and memberships are

then tested on X and Y . 2-1B: (a) The original community (b) After the dotted edge is

removed, two smaller communities arise. 2-1C: (a) The original four communities (b)

After the central node is removed, the leftover nodes join in different modules, forming

three new communities. 2-1D: (a) The original community (b) When g is removed, a

3-clique is placed at a to discover b, c , d and e. f assigned singleton afterwards.

In order to reflect changes introduced to the social network, its underlying graph is

constantly updated by either inserting or removing a node or a set of nodes, or by either

introducing or deleting an edge or a set of edges. In fact, the introduction or removal of a

set of nodes (or edges) can be decomposed as a sequence of node (or edge) insertions

(or removals), in which a single node (or a single edge) is introduced (or removed) at a

time. This observation helps us to treat network changes as a collection of simple events

where a simple event can be one of newNode, removeNode, newEdge, removeEdge

whose details are as follow:

• newNode (V ∪ {u}): A new node u with its associated edges are introduced. u
could come with no or more than one new edge(s).

• removeNode (V \{u}): A node u and its adjacent edges are removed from the
network.

• newEdge (E ∪ {e}): A new edge e connecting two existing nodes is introduced.

• removeEdge (E\{e}): An existing edge e in the network is removed.

Our approach first requires an initial community structure C0, which we call the

basic structure, in order to process further. Since the input model is restricted as an

undirected unweighted network, this initial community structure can be obtained by

performing any of the available static community detection methods [4][5][8]. To obtain

27

A B

C

D

Figure 2-1. Possible behaviors of the network community structure during evolution.

a good basic structure, we choose the method proposed by Blondel et al. in [5] which

produces a good network community structure in a timely manner [3].

2.2.1 New Node

Let us consider the first case when a new node u and its associated connections

are introduced. Note that u may come with no adjacent edges or with many of them

connecting one or more communities. If u has no adjacent edge, we create a new

community for it and leave the current structure intact. The interesting case happens,

and it usually does, when u comes with edges connecting one or more existing

28

communities. In this latter situation, we need to determine which community u should

join in in order to maximize the gained modularity. There are several local methods

introduced for this task, for instance the algorithms of [4][8]. Our method is inspired by a

physical approach proposed in [59], in which each node is influenced by two forces: FC
in

(to keep u stays inside community C) and FC
out (the force a community C makes in order

to bring u to C) defined as follow:

FC
in (u) = euC −

du(dC − du)

2M
,

and

F S
out(u) = max

S∈NC(u)

{
euS −

dudoutS

2M

}
,

where doutS is of opposite meaning of dS .

Taking into account the above two forces, a node v can actively determines its

best community membership by computing those forces and either lets itself join the

community S having the highest F S
out(v) (if F S

out(v) > F
C(v)
in (v)) or stays in the current

community C(v) otherwise. By Theorem 2.1, we bridge the connection between those

forces and the objective function, i.e., joining the new node in the community with the

highest outer force will maximize the local gained modularity. The process is presented

in Alg. 1.

Theorem 2.1. Let C be the community having the maximum FC
out(u) when a new node u

with degree p is added to G , then joining u in C gives the maximal gained modularity.

Proof. Let D be a community of G and D ̸= C , we show that joining u in D contributes

less modularity than joining u in C . The overall modularity Q when u joins in C is

Q1 =
mC + euC
M + p

− (dC + euC + p)2

4(M + p)2
+

mD

M + p
− (dD + euD)

2

4(M + p)2
+ A,

29

Algorithm 1 New Node
Input: New node u with associated links; Current structure Ct .
Output: An updated structure Ct+1

1: Create a new community of only u;
2: for v ∈ N(u) do
3: Let v determine its best community;
4: end for
5: for C ∈ NC(u) do
6: Find FC

out(u);
7: end for
8: if maxC F

C
out(u) > FCu

in (u) then
9: Let Cu ← argmaxC {FC

out(u)};
10: Update Ct+1 : Ct+1 ←

(
Ct\Cu

)
∪
(
Cu ∪ u

)
;

11: end if

where A is the summation of other modularity contributions. Similarly, joining u to D

gives

Q2 =
mC

M + p
− (dC + euC)

2

4(M + p)2
+
mD + euD
M + p

− (dD + euD + p)2

4(M + p)2
+ A,

and

Q1 −Q2 =
1

M + p

(
euC − euD +

p(dD − dC + euD − euC)

2(M + p)

)
.

Now, since C is the community that gives the maximum FC
out(u), we obtain

euC −
p(dC + euC)

2(M + p)
> euD −

p(dD + euD)

2(M + p)
,

which implies

euC − euD +
p(dD − dC + euD − euC)

2(M + p)
> 0.

Hence, Q1 −Q2 > 0 and thus the conclusion follows.

2.2.2 New Edge

When a new edge e = (u, v) connecting two existing vertices u, v is introduced,

we divide it further into two subcases: e is an intra-community link (totally inside a

community C) or an inter-community link (connects two communities C(u) and C(v)).

If e is inside a community C , its presence will strengthen the inner structure of C

30

according to Lemma 1. Furthermore, by Lemma 2, we know that adding e should not

split the current community C into smaller modules. Therefore, we leave the current

network structure intact in this case.

The interesting situation occurs when e is a link connecting communities C(u) and

C(v) since its presence could possibly make u (or v) leave its current module and join

in the new community. Additionally, if u (or v) decides to change its membership, it can

advertise its new community to all its neighbors and some of them might eventually want

to change their memberships as a consequence. By Lemma 3, we show that should u

(or v) ever change its community assignment, C(v) (or C(u)) is the best new community

for it. But how can we quickly decide whether u (or v) should change its membership

in order to form a better community structure with higher modularity? To this end, we

provide a criterion to test for membership changing of u and v in Theorem 2.2. Here, if

both �qu,C ,D and �qv ,C ,D fail to satisfy the criteria, we can safely preserve the current

network community structure (Corollary 1). Otherwise, we move u (or v) to its new

community and consequently let its neighbors determine their best modules to join in,

using local search and swapping to maximize gained modularity. Figure 2-1A describes

the procedure for this latter case. The detailed algorithm is described in Alg. 2.

Lemma 1. For any C ∈ C, if dC ≤ M − 1 then adding an edge within C will increase its

modularity contribution.

Proof. The portion Q1 that community C contributes to the overall modularity Q is

Q1C =
mC

M
− d2

C

4M2
.

When a new edge coming in, the new modularity Q2 is

Q2C =
mC + 1

M + 1
− (dC + 2)2

4(M + 1)2
.

31

Algorithm 2 New Edge
Input: Edge {u, v} to be added; Current structure Ct .
Output: An updated structure Ct+1.

1: if (u and v /∈ V) then
2: Ct+1 ← Ct ∪ {u, v};
3: else if C(u) ̸= C(v) then
4: if �qu,C(u),C(v) < 0 and �qv ,C(u),C(v) < 0 then
5: return Ct+1 ≡ Ct ;
6: else
7: w = argmax{�qu,C(u),C(v), �qv ,C(u),C(v)};
8: Move w to the new community;
9: for t ∈ N(w) do

10: Let t determine its best community;
11: end for
12: Update Ct+1;
13: end if
14: end if

Now, taking the difference between Q2 and Q1 gives

�QC = Q2C −Q1C

=
4M3 − 4mCM

2 − 4dCM
2 − 4mCM + 2d2

CM + d2
C

4(M + 1)2M2

≥ 4M3 − 6dCM
2 − 2dCM + 2d2

CM + d2
C

4(M + 1)2M2
(since mC ≤ dC

2
)

≥ (2M2 − 2dCM − dC)(2M − dC)

4(M + 1)2M2
≥ 0

The last inequality holds since dC ≤ M − 1 implies 2M2 − 2dCM − dC ≥ 0.

Lemma 2. If C is a community in the current snapshot of G , then adding any intra-

community link to C should not split it into smaller modules.

Proof. Assume the contradiction, i.e, C should be divided into smaller modules when

an edge is added into it. Let X1,X2, ..,Xk be disjoint subsets of C representing these

modules. Let di and eij be the total degree of vertices inside Xi and the number of links

going from Xi to Xj , respectedly. Assume that, W.L.O.G., when an edge is added inside

32

C , it is added to X1. We will show that∑
i ̸=j didj

2M
<

∑
i ̸=j

eij <

∑
i ̸=j didj

2M
+ 1,

which can not happen since
∑

i ̸=j eij is an natural number. Recall that

Q1C =
mC

M
− d2

C

4M2
,

and

QXi
=

mi

M
− d2

i

4M2
,

and prior to adding an edge to C , we have

Q1C >

k∑
i=1

QXi
,

or equivalently,
mC

M
− d2

C

4M2
>

k∑
i=1

(mi

M
− d2

i

4M2

)
.

Since X1,X2, ..,Xk are disjoint subsets of C , it follows that

dC =

k∑
i=1

di

and

mC =

k∑
i=1

mi +
∑
i<j

eij ,

(where mi is the number of links inside Xi). The above inequality equals to

mC

M
−

k∑
i=1

mi

M
>

d2
C

4M2
−

k∑
i=1

d2
i

4M2
,

or ∑
i<j

eij >

⌈∑
i<j didj

2M

⌉
.

Now, assume that the new edge is added to X1 and C is split into X1,X2, ..,Xk which

implies that dividing C into k smaller communities will increase the overall modularity,

33

i.e.,

Q2C <
k∑
i=1

Q2Xi
.

Now,

Q2C <
k∑
i=1

Q2Xi

⇔
∑k

i=1mi +
∑

i<j eij + 1

M + 1
−

(∑k

i=1 di + 2
)2

4(M + 12)
<

m1 + 1

M + 1
− (d1 + 2)2

4(M + 1)2
+

k∑
i=2

(mi

M + 1
− d2

i

4(M + 1)2
)

⇔
∑k

i=1mi +
∑

i<j eij + 1

M + 1
−

(∑k

i=1 di + 2
)2

4(M + 12)
<

∑k

i=1mi + 1

M + 1
− (d1 + 2)2

4(M + 1)2
−

k∑
i=2

d2
i

4(M + 1)2

⇔
∑
i<j

eij <

∑k

i=1 di − 2d1 +
∑

i<j didj

2(M + 1)

Moreover, since it is obvious that
∑k

i=1 di − 2d1 < 2M, we have∑k

i=1 di − 2d1 +
∑

i ̸=j didj

2(M + 1)
<

⌈∑
i<j didj

2M

⌉
+ 1,

and thus the conclusion follows.

Lemma 3. When a new edge (u, v) connecting communities C(u) and C(v) is in-

troduced, C(v) (or C(u)) is the best candidate for u (or v) if it should ever change its

membership.

Proof. Let C ≡ C(u) and D ≡ C(v). Recall the outer force that a community S applies

to vertex u is

F S
out(u) = eSu −

dudoutS

2M
.

We will show that the presence of edge (u, v) will strengthen FD
out(u) while weakening

the other outer forces F S
out(u), i.e, we show that FD

out(u) increases while F S
out(u)

34

decreases for all S /∈ {C ,D}.

FD
out(u)new − FD

out(u)old =
(
eDu + 1− (du + 1)(doutD + 1)

2(M + 1)

)
−
(
eDu −

dudoutD

2M

)
=

2M + dudoutD

2M
− dudoutD + doutD + du + 1

2(M + 1)

≥ 2M + dudoutD

2(M + 1)
− dudoutD + doutD + du + 1

2(M + 1)
> 0

and thus FD
out(u) is strengthened when (u, v) is introduced. Furthermore, for any

community S ∈ C and S /∈ {C ,D}, we have

F S
out(u)new − F S

out(u)old =
(
eSu −

(du + 1)doutS
2(M + 1)

)
−
(
eSu −

dudoutS

2M

)
= doutS

(du
2M
− du + 1

2(M + 1)

)
< 0

which implies F S
out(u) is weakened when (u, v) is connected. Hence, the conclusion

follows.

Theorem 2.2. Assume that a new edge (u, v) is added to the network. Let C ≡ C(u)

and D ≡ C(v). If

�qu,C ,D ≡ 4(M + 1)(euD + 1− euC) + euC(2dD − 2du − euC)− 2(du + 1)(du + 1+ dD − dC) > 0

then joining u to D will increase the overall modularity.

Proof. Node u should leave its current community C and join in D if

QD+u +QC−u > QC +QD ,

or equivalently,

mD + eD + 1

M + 1
− (dD + du + 2)2

4(M + 1)2
+
mC − eC

M + 1
− (dC − du − eC)

2

4(M + 1)2

>
mD

M + 1
− (dD + 1)2

4(M + 1)2
+

mC

M + 1
− (dC + 1)2

4(M + 1)2

35

The above equation equals to

4(M + 1)(eD + 1− eC) + eC(2dD − 2du − eC)− 2(du + 1)(du + 1 + dD − dC) > 0,

which concludes the Theorem.

Corollary 1. If the condition in Theorem 2.2 is not satisfied, then neither u nor its

neighbors should be moved to D.

Proof. The proof follows from Theorem 2.2.

2.2.3 Node Removal

When an existing node u in a community C is removed, all of its adjacent edges

are disregarded as a result. This case is challenging in the sense that the resulting

community is very complicated: it can be either unchanged or broken into smaller pieces

and could probably be merged with other communities. Let’s consider two extreme

cases when a single degree node and a node with highest degree in a community

is removed. If a single degree node is removed, it leaves the resulted community

unchanged (Lemma 5). However, when a highest degree vertex is removed, the current

community might be disconnected and broken in to smaller pieces which then are

merged to other communities as depicted in Figure 2-1C. Therefore, identifying the

leftover structure of C is a crucial part once a vertex in C is removed.

To quickly and efficiently handle this task, we utilize the clique percolation

method presented in [2]. In particular, when a vertex u is removed from C , we place

a 3-clique to one of its neighbors and let the clique percolate until no vertices in C are

discovered (Figure 2-1D). We then let the remaining communities of C choose their best

communities to merge in. The detailed algorithm is presented in Alg. 3.

2.2.4 Edge Removal

In the last case when an edge e = (u, v) is removed, we divide further into

four subcases (1) e is a single edge connecting only u and v (2) either u or v has

36

Algorithm 3 Node Removal
Input: Node u ∈ C to be removed; Current structure Ct .
Output: An updated structure Ct+1.

1: i ← 1;
2: while N(u) ̸= ∅ do
3: Si = {Nodes found by a 3-clique percolation on v ∈ N(u)};
4: if Si == ∅ then
5: Si ← {v};
6: end if
7: N(u)← N(u)\Si ;
8: i ← i + 1;
9: end while

10: Let each singleton in N(u) consider its best communities;
11: Let each Si consider its best communities as in [5]
12: Update Ct ;

degree one (3) e is an inter-community link connecting C(u) and C(v) and (4) e is an

intra-community link. If e is an single edge, its removal will result in the same community

structure plus two singletons of u and v themselves. The same reaction applies to the

second subcase when either u or v has single degree due to Lemma 5, thus results in

the prior network structure plus u (or v). When e is an inter-community link, the removal

of e will strengthen the current network communities (Lemma 4) and hence, we just

make no change to the overall network structure.

The last but most complicated case happens when an intra-community link is

deleted. As depicted in Figure 2-1B, removing this kind of edge often leaves the

community unchanged if the community itself is densely connected; however, the

target module will be divided if it contains substructures which are less attractive or

loosely connected to each other. Therefore, the problem of identifying the structure

of the remaining modules is important. Theorem 2.3 provides us a convenient tool to

test for community bi-division when an intra-community link is removed from the host

community C . However, it requires an intensive look for all subsets of C , which may be

time consuming when C is big. Note that prior to the removal of (u, v), the community

C hosting this link should contain dense connections within itself and thus, the removal

37

of (u, v) should leave some sort of ‘quasi-clique’ structure [2] inside C . Therefore, we

find all maximal quasi-cliques within the current community and have them (as well as

leftover singletons) determine their best communities to join in. The detailed procedure

is described in Alg. 4.

Algorithm 4 Edge Removal
Input: Edge (u, v) to be removed; Current structure Ct .
Output: An updated clustering Ct+1.

1: if (u, v) is a single edge then
2: Ct+1 = (Ct\{u, v}) ∪ {u} ∪ {v};
3: else if Either u (or v) is of degree one then
4: Ct+1 = (Ct\C(u)) ∪ {u} ∪ {C(u)\u};
5: else if C(u) ̸= C(v) then
6: Ct+1 = Ct ;
7: else
8: % Now (u, v) is inside a community C %
9: L = {Maximal quasi-cliques in C};

10: Let the singletons in C\L consider their best communities;
11: end if
12: Update Ct+1;

Lemma 4. If C and D are two communities of G , then the removal of an inter-community

link connecting them will strengthen modularity contributions of both C and D.

Proof. Let Q1C (resp. Q1D) and Q2C (resp. Q2D) be the modularities of C (resp. D)

before and after the removal of that link. We show that Q2C > Q1C (and similarly,

Q2D > Q1D) and thus, C and D contribute higher modularities to the network.

Q2C −Q1C =
(m1

M − 1
− (d1 − 1)2

4(M − 1)2
)
−
(m1

M
− d2

1

4M2

)
= m1

(1

M − 1
− 1

M

)
+

1

4

(d1
M
− d1 − 1

M − 1

)(d1
M

+
d1 − 1

M − 1

)
Since all terms are all positive, Q2C −Q1C > 0. The same technique applies to show that

Q2D > Q1D .

Lemma 5. The removal of (u, v) inside a community C where only u or v is of degree

one will not separate C .

38

Proof. Assume the contradiction, i.e., after the removal of (u, v) where du = 1, C

is broken into smaller communities X1, X2,..., Xk which contribute higher modularity:

QX1
+ ... + QXk

> QC . W.L.O.G., suppose u was connected to X1 prior to its removal. It

follows that QX1+u > QX1
and thus QX1+u + ... + QXk

> QC , which raises a contradiction

since C is originally a community of C.

Lemma 6. (Separation of a community) Let C1 ⊆ C and C2 = C\C1 be two disjoint

subsets of C . (C\C) ∪ {C1,C2} is a community structure with higher modularity when an

edge crossing C1 and C2 is removed, i.e., C should be separated into C1 and C2, if and

only if e12 < d1d2−dC+1
2(M−1)

+ 1.

Proof. Let q1, q2 and qC denote the modularity contribution of C1, C2 and C after an

edge crossing (C1,C2) has been removed. Now,

e12 <
d1d2 − dC + 1

2(M − 1)
+ 1⇔ 2d1d2 − 2dC + 2

4(M − 1)2
>

e12 − 1

M − 1

⇔ (d1 + d2 − 2)2

4(M − 1)2
− (d1 − 1)2

4(M − 1)2
− (d2 − 1)2

4(M − 1)2

>
m1 +m2 + e12 − 1

M − 1
− m1 − 1

M − 1
− m2 − 1

M − 1

⇔ m1 − 1

M − 1
− (d1 − 1)2

4(M − 1)2
+
m2 − 1

M
− (d2 − 1)2

4(M − 1)2

>
m1 +m2 + e12 − 1

M − 1
− (d1 + d2 − 2)2

4(M − 1)2

⇔ q1 + q2 > qC .

Thus, the conclusion follows.

Theorem 2.3. (Community bi-division) For any community C , let α and β be the lowest

and the second highest degree of vertices in C , respectively. Assume that an edge e is

removed from C . If there do not exist subsets C1 ⊆ C and C2 ≡ C\C1 such that e is

crossing C1 and C2 and min {α(dC−α),β(dC−β)}
2M

< e12 < (dC−2)2

8(M−1)
+ 1, then any bi-division of C

will not benefit the overall Q.

39

Proof. From Lemma 6, it follows that in order to really benefit the overall modularity we

must have
d1d2

2M
< e12 <

d1d2 + 1

2(M − 1)
+ 1.

Now we find an upper bound for the RHS inequality. Since d1 + d2 = dC , it follows that

e12 <
d1d2 − dC + 1

2(M − 1)
+ 1 ≤

(d1+d2)
2

4
− dC + 1

2(M − 1)
+ 1

≤
d2
C

4
− dC + 1

2(M − 1)
+ 1 =

(dC − 2)2

8(M − 1)
+ 1

For a lower bound of the LHS inequality, we rewrite d1d2 as d1d2 = d1(dC − d1) =

d1dC − d2
1 and find the non-zero minimum value on the range d1 ∈ [α, β]. In this interval,

d1dC − d2
1 is minimized either at d1 = α or d1 = β. Therefore,

min {α(dC − α), β(dC − β)}
2M

≤ d1d2

2M
< e12 ≤

(dC − 2)2

8(M − 1)
+ 1

Finally, our QCA method for quickly updating the network community structure is

presented in Alg. 5.

Algorithm 5 Quick Community Adaptation (QCA)
Input: G ≡ G0 = (V0,E0), E = {E1, E2, .., Es} a collection of simple events
Output: Community structure Ct of G t at time t.

1: Use [5] to find an initial community clustering C0 of G0;
2: for (t ← 1 to s) do
3: Ct ← Ct−1;
4: if Et = newNode(u) then
5: New Node(Ct , u);
6: else if Et = newEdge((u, v)) then
7: New Edge(Ct , (u, v));
8: else if Et = removeNode(u) then
9: Remove Node(Ct , u);

10: else
11: Remove Edge(Ct , (u, v));
12: end if
13: end for

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

N
M

I

Time points

QCA
OSLOM

FacetNet
MIEN

A N = 1000,µ = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

N
M

I

Time points

QCA
OSLOM

FacetNet
MIEN

B N = 1000,µ = 0.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

N
M

I

Time points

QCA
OSLOM

FacetNet
MIEN

C N = 5000,µ = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

N
M

I

Time points

QCA
OSLOM

FacetNet
MIEN

D N = 5000,µ = 0.3

Figure 2-2. NMI scores on synthesized networks with known communities

2.3 Experimental Results

In this section, we first validate our approaches on different synthesized networks

with known groundtruths, and then present our findings on real world traces including

the Enron email [31], arXiv eprint citation [60], and Facebook social networks [61].

To certify the performance of our algorithms, we compare QCA to other adaptive

community detection methods including (1) MIEN algorithm proposed by Thang et

al. [35], (2) FacetNet framework proposed by Lin et al. [36], and (3) OSLOM method

suggested by Lancichinetti et al. [40].

41

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0 2 4 6 8 10

M
o

d
u

la
ri
ty

Time points

OSLOM
QCA

FacetNet
MIEN

A N = 1000,µ = 0.1

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0 2 4 6 8 10

M
o

d
u

la
ri
ty

Time points

OSLOM
QCA

FacetNet
MIEN

B N = 1000,µ = 0.3

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0 2 4 6 8 10

M
o
d
u
la

ri
ty

Time points

OSLOM
QCA

FacetNet
MIEN

C N = 5000,µ = 0.1

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

 0.67

 0.68

 0.69

 0.7

 0 2 4 6 8 10

M
o
d
u
la

ri
ty

Time points

OSLOM
QCA

FacetNet
MIEN

D N = 5000,µ = 0.3

Figure 2-3. Modularity values on synthesized networks with known communities

2.3.1 Results on Synthesized Networks

Of course, the best way to evaluate our approaches is to validate them on real

networks with known community structures. Unfortunately, we often do not know that

structures beforehand, or such structures cannot be easily mined from the network

topology. Although synthesized networks might not reflect all the statistical properties of

real ones, they provide us known ground truths via planted communities, and the ability

to vary other parameters such as sizes, densities and overlapping levels, etc. Testing

community detection methods on generated data has become an usual practice that is

widely accepted in the field [3]. Hence, comparing QCA with other dynamic methods

42

on synthesized networks not only certifies its performance but also provides us the

confidence to its behaviors on real world traces.

Setup. We use the well-known LFR benchmark [3] to generate 40 networks with

10 snapshots. Parameters are: the number of nodes N = {1000, 5000}, the mixing

parameter µ = {0.1, 0.3} controlling the overall sharpness of the community structure.

In order to quantify the similarity between the identified communities and the ground

truth, we adopt a well known measure in Information Theory called Normalized Mutual

Information (NMI). NMI has been proven to be reliable and is currently used in testing

community detection algorithms [3]. Basically, NMI (U,V) equals 1 if structures U and V

are identical and equals 0 if they are totally separated, and the higher NMI the better.

Results. The NMI and Modularity values are reported in Figures 2-2 and 2-3.

As depicted in their subfigures, the NMI values and modularities indicated by our

QCA method, in general, are very high and competitive with those of OSLOM while

are much better than those produced by MIEN and FacetNet methods. On these

generated networks, we observe that MIEN and FacetNet perform well when the mixing

parameter µ is small, i.e., when the network community structures are clear, however,

their performances degrade dramatically when these structures become less clear as

µ gets larger. Particularly, MIEN’ and FacetNet’ NMI scores and modularities in all test

cases are fairly low and usually from 10% to 50% and 5% to 15% worst than those

produced by QCA. This implies the network communities revealed by these methods are

not as high similarity to the ground-truth as QCA algorithm. On the generated networks,

OSLOM algorithm performs very well as suggested through its high NMI scores and

modularity values. In particular, OSLOM tends to perform better than QCA in the first

couple of network snapshots, however, its performance is taken over by QCA when the

networks evolve over time, especially at the end of the evolution where OSLM reveals

big gaps in similarity to the planted network communities (Note that the higher NMI

score at the end of the evolution, the better the final detected community structure). This

43

concludes that the network communities discovered by QCA are of the best similarity to

ones planted in the ground-truth in comparison with other methods.

2.3.2 Results on Real World Traces

We next present the results of QCA algorithms on real world dynamic social

networks including ENRON email [31], arXiv e-print citation [60], and Facebook

networks [61]. Due to the lack of appropriate communities corresponding to these

traces, we report the performance of the aforementioned algorithms in reference to the

static method proposed by Blondel et al. [5]. In particular, we will show the following

quantities (1) modularity values, (2) the quality of the identified network communities

through NMI scores, and (3) the processing time of our QCA in comparison with other

methods. The above networks possess to contain strong community structures due to

their high modularities, which was the main reason for them to be chosen.

For each network, time information is first extracted and a portion of the network

data (usually the first snapshot) is then collected to form the basic network community

structure. Our QCA method (aslo MIEN and OSLOM) take into account that basic

community structure and run on the network changes whereas the static method has

to be performed on the whole network snapshot for each time point. In this experiment,

FacetNet method does not appear to complete the tasks in a timely manner, and is thus

excluded from the plots.

ENRON email network

Data. The Enron email network contains email messages data from about 150

users, mostly senior management of Enron Inc., from January 1999 to July 2002

[31]. Each email address is represented by an unique ID in the dataset and each link

corresponds to a message between the sender and the receiver. After a data refinement

process, we choose 50% of total links to form a basic community structure of the

network with 7 major communities, and simulate the network evolution via a series of 21

growing snapshots.

44

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 5 10 15 20

Time point

Blondel
QCA

MIEN
OSLOM

A Modularity

 5

 6

 7

 8

 9

 10

 0 5 10 15 20

Time point

Blondel
QCA

MIEN
OSLOM

B Number of Communities

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20

Time point

Blondel
QCA

MIEN
OSLOM

C Running Time(s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Time point

QCA
MIEN

OSLOM

D NMI

Figure 2-4. Simulation results on Enron email network.

Results. We first evaluate the modularity values computed by QCA, MIEN,

OSLOM, and Blondel methods. As shown in Figure 2− 4A, our QCA algorithm archives

competitively higher modularities than the static method but a little bit less than MIEN,

and is far better than those obtained by OSLOM. Moreover, QCA also successes in

maintaining the same numbers of communities of the other two methods MIEN and

Blondel while OSLOM’s are vague (Figure 2− 4B). In particular, the modularity values

produced by QCA very well approximate those found by static method with lesser

variation. There are reasons for that. Recall that our QCA algorithm takes into account

the basic community structures detected by the static method (at the first snapshot) and

processes on network changes only. Knowing the basic network community structure

45

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30

Time point

Blondel
QCA

MIEN
OSLOM

A Modularity

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30

Time point

Blondel
QCA

MIEN
OSLOM

B Number of Communities

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

Time point

Blondel
QCA

MIEN
OSLOM

C Running Time(s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time point

QCA
MIEN

OSLOM

D NMI

Figure 2-5. Simulation results on arXiv e-print citation network.

is a great advantage of our QCA algorithm: it can avoid the hassle of searching and

computing from scratch to update the network with changes. In fact, QCA uses the basic

structure for finding and quickly updating the local optimal communities to adapt with

changes introduced during the network evolution.

The running time of QCA and the static method in this small network are relatively

close: the static method requires one second to complete each of its tasks while our

QCA does not even ask for one (Figure 2− 4C). In this dataset, MIEN and OSLOM

requires a little more time (1.5 and 2.4 seconds in average for MIEN and OSLOM) to

complete their tasks. Time and computational cost are significantly reduced in QCA

46

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 5 10 15 20 25

Time point

Blondel
QCA

MIEN
OSLOM

A Modularity

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

Time point

Blondel
QCA

MIEN
OSLOM

B Number of Communities

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25

Time point

Blondel
QCA

MIEN
OSLOM

C Running Time(s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Time point

QCA
MIEN

OSLOM

D NMI

Figure 2-6. Simulation results on Facebook social network.

since our algorithms only take into account the network changes while the static method

has to work on the whole network every time.

As reported in Figure 2− 4D, both the NMI scores of ours and MIEN method

are very high and relatively close to 1 while those obtained by OSLOM fall short and

are far from stable. These results indicate that in this Enron email network, both QCA

and MIEN algorithms are able to identify high quality community structure with high

modularity and similarity; however, only our method significantly reduces the processing

time and computational requirement.

47

arXiv e-print citation network

Data. The arXiv e-print citation network [60] has become an essential mean of

assessing research results in various areas including physics and computer sciences.

This network contained more than 225K articles from January 1996 to May 2003. In

our experiments, citation links of the first two years 1996 and 1997 were used to form

the basic community structure of our QCA method. In order to simulate the network

evolution, a total of 30 time dependent snapshots are created on a two-month regular

basis from January 1998 to January 2003.

Results. We compare modularity results obtained by QCA algorithm at each

network snapshot to Blondel as well as to MIEN and OSLOM methods. It reveals from

Figure 2-5A that the modularities returned by QCA are very close to those obtained

by the static method with much more stabler and are far higher than those obtained

by OSLOM and MIEN. In particular, the modularity values produced by QCA algorithm

cover from 94% up to 100% that of Blondel method and from 6% to 10% higher than

MIEN and at least 1.5x better than OSLOM. In this citation networks, the numbers of

communities detected by OSLOM take off with more than 1200 whereas those found by

QCA, MIEN and Blondel methods are relatively small (Figure 2-5B). Our QCA method

discovers more communities than both Blondel and MIEN as the network evolves

and this can be explained based on the resolution limit of modularity [58]: the static

method might disregard some small communities and tend to combine them in order to

maximize the overall network modularity.

A second observation on the running time shows that QCA outperforms the static

method as well as its competitor MIEN: QCA takes at most 2 seconds to complete

updating the network structure while Blondel method requires more than triple that

amount of time, MIEN and OSLOM asks for more than 5 times (Figure 2− 5C). In

addition, higher NMI scores of QCA than MIEN’s and especially OSLOM’s scores

(Figure 2− 5D) implies network communities identified by our approach are not only

48

of high similarity to the ground truth but also more precise than that detected by MIEN,

while the computational cost and the running time are significantly reduced.

Facebook social network

Data. This dataset contains friendship information among New Orleans regional

network on Facebook [61], spanning from September 2006 to January 2009 with more

than 60K nodes (users) connected by more than 1.5 million friendship links. In our

experiments, nodes and links from September 2006 to December 2006 are used to

form the basic community structure of the network, and each network snapshot is

recored after every month during January 2007 to January 2009 for a total of 25 network

snapshots.

Results. The evaluation depicted in Figure 2− 6A reveals that QCA algorithm

achieves competitive modularities in comparison with the static method, and again far

better than those obtained by MIEN and OSLOM method, especially in comparison with

OSLOM whose perform was nice on synthesized networks. In the general trend, the

line representing QCA results closely approximates that of the static method with much

more stability. Moreover, the two final modularity values at the end of the experiment are

relatively the same, which means that our adaptive method performs competitively with

the static method running on the whole network.

Figure 2− 6C describes the running time of the three methods on the Facebook

data set. As one can see from this figure, QCA takes at least 3 seconds and at most

4.5 seconds to successfully compute and update every network snapshot whereas the

static method, again, requires more than triple processing time. MIEN and OSLOM

methods really suffer on this large scale network when requiring more than 10x and

11x that amounts of QCA running times. In conclusion, high NMI and modularity scores

together with decent executing times on all test cases confirm the effectiveness of

our adaptive method, especially when applied to real world social networks where a

49

centralized algorithm, or other dynamic algorithms, may not be able to detect a good

network community structure in a timely manner.

However, there is a limitation of QCA algorithm we observe on this large network

and want to point out here: As the the duration of network evolution lasts longer over

time (i.e., the number of network snapshots increases), our method tends to divide the

network into smaller communities to maximize the local modularity, thus results in an

increasing number of communities and a decreasing of NMI scores. Figure 2− 6B and

2− 6D describes this observation. For instance, at snapshot 12 (a year after December

2006), the NMI score is approximately 1/2 and continues decaying after this time point.

It implies a refreshment of network community structure is required at this time, after a

long enough duration. This is reasonable since activities on an online social network,

especially on Facebook social network, tend to come and go rapidly and local adaptive

procedures are not enough to reflect the whole network topology over a long period of

time.

50

CHAPTER 3
OVERLAPPING COMMUNITY STRUCTURE DETECTION

In this chapter, we present AFOCS, an adaptive framework to discover and trace the

evolution of network communities in dynamic complex systems. In section 3.1, we first

state the problem definition including basic notations and the dynamic network model.

Next, we present the procedure to detect the basic community structure in section 3.2,

and then our AFOCS framework to update and trace the community structure evolution

over time in section 3.3. Finally, we demonstrate the empirical results in section 3.4.

3.1 Problem Formulation

3.1.1 Basic Notations

Let G = (V ,E) be an undirected unweighted graph representing the network

where V is the set of N nodes and E is the set of M connections. Denote by C =

{C1,C2, ...,Ck} the network community structure, i.e., a collection of subsets of V

where each Ci ∈ C and its induced subgraph form a community of G . In contrast with

the disjoint community structure, we allow Ci ∩ Cj ̸= ∅ so that network communities

can overlap with each other. For a node u ∈ V , let du, N(u) and Com(u) denote its

degree, its neighbors and its set of community labels, respectively. For any C ⊆ V ,

let C in and C out denote the set of links having both endpoints in C and the set of links

having exactly one endpoint in C , respectively. Finally, the terms node-vertex as well as

edge-link-connection are used interchangeably.

3.1.2 Dynamic Network Model

Let G0 = (V0,E0) be the original input network and Gt = (Vt ,Et) be a time

dependent network snapshot recorded at time t. Denote by �Vt and �Et the sets of

nodes and edges to be added to or removed from the network at time t. Furthermore,

let �Gt = (�Vt , �Et) describe this change in terms of the whole network. The network

snapshot at next time step t + 1 is expressed as a combination of the previous one

51

Figure 3-1. Overlapped v.s. non-overlapped community structures.

together with the change, i.e., Gt+1 = Gt ∪ �Gt . Finally, a dynamic network G is defined

as a sequence of network snapshots changing over time: G = (G0,G1,G2, ...).

3.1.3 Density Function

In order to quantify the goodness of an identified community, we use the popular

density function 	 [62] defined as: 	(C) = 2|C in|
|C |(|C |−1)

where C ⊆ V . Unlike the case of

disjoint community structure, in which the number of connections crossing communities

should be less than those inside them, our objective does not take into account the

number of out-going links from each community. To understand the reason, let us

consider a simple example pictured in Figure 3− 1. In the overlapping community

structure point of view, it is clear that every clique should form a community on its own,

and each community shares with the central clique exactly one node. However, in the

disjoint community structure point of view, any vertex at the central clique has n internal

and 2n external connections, which violates the concept of a community in the strong

sense. Furthermore, the internal connectivity of the central clique is also dominated by

its external density, which implies the concept of a community in weak sense is also

violated. (A community C is in a weak sense if |C in| > |C out |, and in a strong sense if

any node in C has more links inward than outward C [63]).

52

In order to set up a threshold on the internal density that suffices for a set of nodes

C to be a local community, we propose a function τ(C) defined as follows:

τ(C) =
σ(C)(|C |

2

) where σ(C) =

(
|C |
2

)1− 1

(|C |
2)

Here σ(C) is the threshold on the number of inner connections that suffices for C to be

a local community. Particularly, a subgraph induced by C is a local community iff 	(C)

≥ τ(C) or equivalently |C in| ≥ σ(C). Several functions with the same purpose have been

introduced in the literature, for instance, in the work of [46][44], and it is worth noting

down the main differences between them and ours. First and foremost, our functions

τ(C) and σ(C) locally process on the candidate community C only and neither require

any predefined thresholds or user-input parameters. Secondly, by Proposition 3.1, σ(C)

and τ(C) are increasing functions and closely approach C ’s full connectivity as well as

its maximal density. That makes σ(C) and τ(C) relaxation versions of the traditional

density function, yet useful ones as we shall see in the experiments.

Proposition 3.1. The function f (n) = n1−
1
n is strictly increasing for n ≥ 4 and

limn→∞ f (n) = n.

3.1.4 Objective Function

Our objective is to find a community assignment for the set of nodes V which

maximizes the overall internal density function 	(C) =
∑

C∈C 	(C) since the higher

the internal density of a community is, the clearer its structure would be. Although our

objective puts more focus on the internal edges and less focus on the external edges,

these external edges are not completely ignored but are considered in the following

senses: they will be tested later for the formation of another community if the number

of edges suffices. Only when these external edges are really sparse, they will not be

considered.

53

3.1.5 Problem Definition

Given a dynamic network G = (G0,G1,G2, ...) where G0 is the input network and

G1,G2, ... are network snapshots obtained through a collection of network topology

changes �G1, �G2, ... over time. The problem asks for an adaptive framework to

efficiently detect and update the network overlapping community structure Ct at any

time point t by only utilizing the information from the previous snapshot Ct−1, as well as

tracing the evolution of the network communities.

In the next section, we present our main contribution: an adaptive framework for

(1) identifying basic overlapped community structure in a network snapshot and (2)

updating as well as tracing the evolution of the network communities in a dynamic

network model. First, we describe FOCS, a procedure to identify the basic communities

in a static network, and then discuss in great detail how AFOCS adaptively updates

these basic communities to cater with the evolution of the dynamic network.

3.2 Basic Community Structure Detection

We describe FOCS, the first phase of our framework that quickly discovers the

basic overlapping network community structure. In general, FOCS works toward the

classification of network nodes into different groups by first locating all possible densely

connected parts of the network (3.2.1), and then combining those who highly overlap

with each other, i.e., those share a significant substructure (3.2.2). Finally, a final

refinement to group unassigned nodes into different communities is conducted in (3.2.3).

In FOCS, β (the input overlapping threshold) defines how much substructure two

communities can share. Note that FOCS fundamentally differs from [48] in the way

it allows |Ci ∩ Cj | ≥ 2 for any subsets Ci ,Cj of V , and consequently allows network

communities to overlap not only at a single vertex but also at a part of the whole

community.

54

u v

(a) A (b) B

Figure 3-2. Locating and merging local communities.

3.2.1 Locating Local Communities

Local communities are connected parts of the network whose internal densities are

greater than a certain level. In FOCS, this level is automatically determined based on

the function τ() and the size of each corresponding part. Particularly, a local community

is defined based on a connection (u, v) when the number of internal connections in the

subgraph induced by C ≡ {u, v} ∪ (N(u) ∩ N(v)) exceeds σ(C), or in other words, when

	(C) ≥ τ(C) as illustrated in Figure 3-2A. Here, (a) A local community C defined by a

link (u, v). Here 	(C) = 0.9 > τ(C) = 0.794 (b) Merging two local communities sharing

a significant substructure (OS score = 1.027 > β = 0.8).

However, there is a problem that might eventually arise: the containment of sub

communities in an actual bigger one. Intuitively, one would like to detect a bigger

community unified by smaller ones if the bigger community is itself densely connected.

In order to filter this undesired case, we impose 	
(∪s

i=1 Ci

)
< τ

(∪s

i=1 Ci

)
∀s = 1...|C|

(note that some of these unifications do not contain all the nodes). In addition, we allow

this locating procedure to skip over tiny communities of size less than 4. This condition

is carried out from Proposition 3.1. This makes sense in terms of mobile or social

networks where a group of mobile devices or a social community usually has size larger

than 3, and intuitively agrees with the finding of [64][65]. Thus, the condition |C | ≥ 4 is

55

imposed for any community C we discuss hereafter. The tiny communities will then be

identified later. Alg. 6 describes this procedure.

Algorithm 6 Locating local communities
Input: G = (V ,E)
Output: A collection of raw communities Cr .

1: Cr ← ∅;
2: for ((u, v) ∈ E) do
3: if (Com(u) ∩ Com(v) = ∅) then
4: C ← {u, v} ∪ N(u) ∩ N(v);
5: if (|C in| ≥ σ(C) and |C | ≥ 4) then
6: Check C ’s connectivity if |C | = 5;
7: Define C a local community;
8: /*Include C into the raw community structure*/
9: Cr ← Cr ∪ {C};

10: end if
11: end if
12: end for

Lemma 7. All local communities C ’s detected by Alg. 6 satisfy 	(C) ≥ τ(4) ≈ 0.74.

Furthermore, other communities satisfying these conditions will also be detected by Alg.

6.

Proof. Alg. 6 will examine every edge (u, v) ∈ E (except those whose endpoints are

already in the same community), and by this greedy nature, any local community it

detects has |C | > 4 and 	(C) ≥ τ(C) ≥ τ(4) ≈ 0.74.

We now show that any community C statisfying |C | ≥ 4 and 	(C) ≥ τ(C) ≥ τ(4)

will also be detected by Alg. 6. Suppose otherwise, that is there exists a community C

satisfying these two conditions and is not detected by Alg. 6. To prove that this is not the

case, we do the following: (1) Construct a community D which is not detected by Alg. 6

with |D| = n ≡ |C | and 	(D) is maximized, and (2) show that 	(D) < τ(D).

Because |D| = |C |, it implies τ(D) = τ(C). However, since 	(D) is maximized,

	(D) ≥ 	(C) which in turn implies 	(C) ≤ 	(D) < τ(D) = τ(C). This raises a

contradiction to our original assumption, and thus concludes the proof.

56

To construct D, we do as follow (i) make D a clique of size n, and (ii) remove edges

from D one by one until D cannot be detected by Alg. 6. By doing in this way, 	(D) is

maximized iff the number of removed edges is minimized.

It is easy to find the least number of edges we have to remove from D is n/2 if n

is even and n/2 − 1 if n is odd. Therefore, mD = n(n − 1)/2 − n/2 if n is even, and

mD = n(n − 1)/2− (n − 1)/2 if n is odd. Now, 	(D) < τ(D) iff mD <
(
n(n−1)

2

)1− 2
n(n−1) . Let

f (n) be the difference between the left and the right hand sides, we show that f (n) < 0

as n increases. Taking the derivative of f (n) gives δf (4) < 0 and f (n) < f (4) < 0 for

all even n > 4, and δf (7) < 0 and f (n) < f (7) < 0 for all odd n > 7. When n = 5,

f (5) > 0 but this is the only exception and thus, can be handled easily in line 6 of Alg. 6.

Therefore, we have 	(D) < τ(D), and hence, the conclusion follows.

Theorem 3.1. The local community structure Cr detected by Alg. 6 satisfies 	(Cr) ≥

τ(4) × 	(OPT) where OPT is the optimal dense community assignment satisfying

	(S) ≥ τ(4) for any S ∈ OPT .

Proof. Let Cr be the local community structure returned by Alg. 6, and OPT be the

optimal solution of the dense community assignment satisfying 	(S) ≥ τ(4) for any

S ∈ OPT . Let k = |OPT |. Clearly 	(OPT) ≤ k . By Lemma 7, we know that Alg. 6 can

detect as many communities as OPT but probably with less internal density. Moreover,

since Alg. 6 only skips over edges in a community, it ensures that no real community is

a substructure of a bigger one. Hence, we have 	(Cr) ≥ τ(4) × k ≈ 0.74 × 	(OPT).

This also implies that Alg. 6 is an 0.74-approximation algorithm for finding local densely

connected communities.

Lemma 8. The time complexity of Alg. 6 is O(dM) where d = maxv∈V dv .

Proof. Time to examine an edge (u, v) is |N(u)|+|N(v)| = du+dv . However, when u and

v are in the same community, (u, v) will be skipped. Therefore, the total time complexity

is upper bounded by d
∑

u∈V du = O(dM).

57

3.2.2 Combining Overlapping Communities

After Alg. 6 finishes, the raw network community structure is pictured as a collection

of (possibly overlapped) dense parts of the network together with outliers. As some of

those dense parts can possibly share significant substructures, we need to merge them

if they are highly overlapped. To this end, we introduce the overlapping score of two

communities defined as follow

OS(Ci ,Cj) =
|Iij |

min{|Ci |, |Cj |}
+

|I inij |
min{|C in

i |, |C in
j |}

where Iij = Ci ∩ Cj . Basically, OS(Ci ,Cj) values how important the common nodes and

links shared between Ci and Cj mean to the smaller community. In comparison with the

distance metric suggested in [43], our overlapping score not only takes into account the

fraction of common nodes but also values the fraction of common connections, which

is crucial in order to combine network communities. Furthermore, OS(·, ·) is symmetric

and scales well with the size of any community, and the higher the overlapping score,

the more those communities in consideration should be merged. In this merging

process, we combine communities Ci and Cj if OS(Ci ,Cj) ≥ β (Figure 3-2B).

Algorithm 7 Combining local communities
Input: Raw community structure Cr
Output: A refined community structure D.

1: D ← Cr ;
2: Done ← false;
3: while (!Done) do
4: Done ← true;
5: Order (Ci ,Cj)’s by their OS(Ci ,Cj) scores;
6: for (Ci ,Cj ∈ Cr) do
7: if (OS(Ci ,Cj) > β and) then
8: C ← Combine Ci and Cj ;
9: /*Update the current structure*/

10: D ← (Cf \{Ci ∪ Cj}) ∪ C ;
11: Done ← False;
12: end if
13: end for
14: end while

58

The time complexity of Alg. 7 is O(N2
0) where N0 is the number of local communities.

Clearly, N0 ≤ M and thus, it can be O(M2). However, when the intersection of

two communities is upper bounded, by Lemma 9 we know that the number of local

communities is also upper bounded by O(N), and thus, the time complexity of Alg. 7

is O(N2). In our experiments, we observe that the running time of this procedure is,

indeed, much less than O(N2).

Lemma 9. The number of raw communities detected in Alg. 6 is O(N) when the number

of nodes in the intersection of any two communities is upper bounded by a constant α.

Proof. For each Ci ∈ C, decompose it into overlapped and non-overlapped parts,

denoted by C ov
i and C nov

i . We have Ci = C ov
i ∪ C nov

i and C ov
i ∩ C nov

i = ∅. Therefore,

|Ci | = |C ov
i |+ |C nov

i |.

Now, ∑
Ci∈C

|Ci | =
∑
Ci∈C

(|C ov
i |+ |C nov

i |) ≤ N +
∑
i<j

|C ov
i ∩ C nov

j |,

where N =
∑

Ci∈C |C
nov
i |+

∣∣∪
Ci∈C |C

ov
i |

∣∣. For an upper bound of the second term, rewrite

∑
i<j

|C ov
i ∩ C nov

j | ≤ N +
∑

|Ci∩Cj |≥2

|Ci ∩ Cj | ≤ N(1 + α),

where α = max{|Ci ∩ Cj | : |Ci ∩ Cj | ≥ 2}

Hence,
∑

Ci∈C |Ci | ≤ N(2 + α). Let N0 be the number of raw communities, it

follows that N0min{|Ci |} ≤
∑

Ci∈C |Ci | ≤ (2 + α)N. Since min{|Ci |} ≥ 4, we have

N0 ≤ (2+α)
4

N = O(N).

Remark

After the above community merging process, detected communities can possibly be

of very large sizes. The explanation is as follow: small quasi-cliques are discovered in

the first phase (Alg. 6) as densely connected parts of the network, and are regarded as

candidate elements for bigger communities in the merging process. If these small

cliques are loosely connected to the rest of the network, they will retain as local

59

communities afterwards. Otherwise, they can be merged to other dense parts to

become new bigger communities. As a result, if the communities are highly overlapped,

some of them can potentially grow to very large sizes at the end of the merging process,

beside the small cliques detected at the first place. Larger dense quasi-cliques, though

rare in many networks, will surely be detected by FOCS as we observed in Theorem 3.1.

3.2.3 Revisiting Unassigned Nodes

Even when the above two procedures are executed, there would still exist leftover

nodes or edges due to their less attraction to the rest of the network. Because of its

size constraint, the first procedure skips over tiny communities of sizes less than four

and thus, may leave out some nodes unlabeled. These nodes will not be touched in the

second phase since they do not belong to any local communities, and consequently, will

remain unassigned afterwards. Moreover, they are mostly nodes with less connection

to the rest of the network, and thus, are very likely supplement nodes possibly to their

adjacent communities. Therefore, we need to revisit those nodes to either group them

into appropriate communities or classify them as outliers based on their connectivity

structures.

Algorithm 8 Revisit Unassigned Nodes
Input: The refined community structure D = {D1,D2, ...,Dt}
Output: The basic community structure C = {C1,C2, ...,Ck}

1: C ← D;
2: for (u ∈ V and Com(u) == ∅) do
3: NC(u)← {Cj ∈ C|u is adjacent to Cj};
4: for (Cj ∈ NC(u)) do
5: if (FCj∪{u} ≥ FCj

) then
6: Cj ← Cj ∪ {u};
7: Com(u)← Com(u) ∪ {j};
8: end if
9: end for

10: if (Com(u) == ∅) then
11: Classify u as an outlier;
12: end if
13: end for

60

Alternatively, this process can be thought of as a community trying to hire adjacent

unassigned nodes which are similar to the host community. However, the internal

density function might be too strict for them to be included in any community (which

was also the reason why they are left unassigned). To this end, we need a community

fitness function in order to quantify the similarity between a node u and a neighbor

community C . We find the fitness function FS = |S in|
2|S in|+|Sout | (where S ⊆ V) commonly

used in [46][66][43] performs competitively in both synthesized and real-world datasets.

Taking into account this fitness function, a community C will keep hiring any unassigned

adjacent vertex of maximum similarity in a greedy manner, provided the newly joined

vertex does not shrink down the community’s current fitness value. If there is no such

node, C is defined as a final network community. Nodes remained unlabeled through

this last procedure are identified as outliers. This algorithm is presented in Alg. 8.

3.3 Detecting Evolving Network Communities

We describe AFOCS, the second phase and also the main focus of our detection

framework. In particular, we use AFOCS to adaptively update and trace the network

communities, which were previously initialized by FOCS, as the dynamic network

evolves over time. Note that FOCS is executed only once on G0, after that AFOCS will

take over and handle all changes introduced to the network.

Let us first discuss the various behaviors of the community structure when the

network topology evolves over time. Suppose G = (V ,E) and C = {C1,C2, ..,Cn} is the

current network and its corresponding overlapping community structure, respectively.

We use the term intra links to denote edges whose two endpoints belong to the same

community, inter links to denote those with endpoints connecting different disjoint

communities and the term hybrid links to stand for the others. For each community C of

G , the number of connections joining C with the others are lesser than the number of

connections within C itself by definition

61

Intuitively, the addition of intra links or removal of inter links between communities

of G will strengthen them and consequently, will make the structure of G more clear.

Similarly, removing intra links from or introducing inter links to a community of G will

decrease its internal density and as a result, loosen its internal structure. However,

when two communities have less distraction to each other, adding or removing links

makes them more attractive to each other and therefore, leaves a possibility that they

can overlap with each other or can be combined to form a new community. The updating

process, as a result, is very complicated and challenging since any insignificant change

in the network topology could possibly lead to an unpredictable transformation of the

network community structure.

In order to reflect these changes to a complex network, its underlying graph model

is frequently updated by either inserting or removing a node or a set of nodes, or an

edge or a set of edges. A scrutiny look into these events reveals that the introduction or

removal of a set of nodes (or edges) can furthermore be decomposed as a collection

of node (or edge) insertions (or removals), in which only a node (or only an edge) is

inserted (or removed) at a time. Therefore, changes to the network at each time step

can be viewed as a collection of simpler events whose details are as follow:

• newNode (V + u): A new node u and its adjacent edge(s) are introduced

• removeNode (V − u): A node u and its adjacent edge(s) are removed from the
network.

• newEdge (E + e): A new edge e connecting two existing nodes is introduced.

• removeEdge (E − e): An edge e in the network is removed.

As we mentioned earlier, our adaptive framework initially requires a basic

community structure C0. To obtain this basic structure, we apply FOCS algorithm at

the first network snapshot, i.e., we execute FOCS on the network G0 and then let

AFOCS adaptively handle this structure as the network evolves.

62

u

Figure 3-3. A possible scenario when a new node is introduced.

3.3.1 Handling a New Node

Let us discuss the first case when a new node u and its associated links are

introduced to the network. Possibilities are (1) u may come with no adjacent edge or (2)

with many of them connecting one or more possibly overlapped communities. If u has no

adjacent edge, we simply join u in the set of outliers and preserve the current community

structure.

The interesting case happens, and it usually does, when u comes with multiple links

connecting one ore more existing communities. Since network communities can overlap

each other, we need to determine which ones u should join in in order to maximize the

gained internal density. But how can we quickly and effectively do so? By Lemma 10,

we give a necessary condition for a new node in order to join in an existing community,

i.e., our algorithm will join node u in C if the number of connections u has to C suffices:

dui > max{ 2|C in
i
|

|Ci |−1
, f (|Ci | + 1) − |C in

i |}. However, failing to satisfy this condition does not

necessarily imply that u should not belong to C , since it can potentially gather some

substructure of C to form a new community (Figure 3-3). Thus, we also need to handle

this possibility. Alg. 9 presents the algorithm.

Lemma 10. Suppose u is a newly introduced node with dui connections to each

adjacent community Ci . u will join in Ci if dui > max{ 2|C in
i
|

|Ci |−1
, f (|Ci |+ 1)− |C in

i |}.

63

Algorithm 9 Handling a new node u

Input: The current community structure Ct−1

Output: An updated structure Ct .
1: C1,C2, ...,Ck ← Adjacent communities of u;
2: for i = 1 do to k

3: if (dui > max{ 2|C in
i
|

|Ci |−1
, f (|Ci |+ 1)− |C in

i |}) then
4: Ci ← Ci ∪ {u};
5: else
6: C ← N(u) ∩ Ci ;
7: if ((C) ≥ τ(C) and |C | ≥ 4) then
8: Ci ← Ci ∪ {u};
9: end if

10: end if
11: end for
12: /*Checking new communities formed from outliers*/
13: for (v ∈ N(u) and Com(v) ∩ Com(u) = ∅) do
14: C ≡ N(u) ∩ N(v);
15: if ((C) ≥ τ(C) and |C | ≥ 4) then
16: Define C a new community;
17: end if
18: end for
19: Merging overlapping communities on C1,C2, ...,Ck ;
20: Update Ct ;

Proof. Prior to u joining to Ci , the internal density is 	(Ci) =
2|C in

i
|

|Ci |(|Ci |−1)
. Similarly, after

u joining in Ci , the density function is 	(Ci ∪ {u}) =
2|C in

i
|+2du i

|Ci |(|Ci |+1)
. Taking the difference

between these two quantities gives 	(Ci ∪ {u}) > 	(Ci) ⇐⇒ dui >
2|C in

i
|

|Ci |−1
. Moreover, u

should also satisfy 	(Ci∪{u}) ≥ τ(Ci∪{u}), which in turn implies du,i ≥ f (|Ci |+1)−|C in
i |.

Therefore, dui > max{ 2|C in
i
|

|Ci |−1
, f (|Ci |+ 1)− |C in

i |}.

The analysis of Alg. 9 is shown by Lemma 11. In particular, we show that this

procedure achieves at least 74% the internal density of the optimal assignment for u,

given the prior community structure.

Lemma 11. Alg. 9 produces a community assignment that, prior to the community

combination process, achieves 	(Ct) ≥ τ(4) × 	(OPT (u)t) where OPT (u)t is the

optimal community assignment for u at time t, given the prior community structure Ct−1.

64

(a) (b)

Figure 3-4. Possible scenarios when a new edge is introduced.

Proof. Let C1,C2, ...,Ck be the communities (including the newly formed ones) in Ct that

Alg. 9 assigns the new node u to. Note that in the optimal solution OPT (u)t , the number

of communities u belongs to should not exceed k since each Ci is also a candidate for

OPT (u)t (of course, OPT (u)t could possibly rearrange nodes differently). Therefore,

the optimal internal density gained is upper bounded by k . On the other hand, Alg. 9

makes sure that each community Ci that u joins in should have 	(Ci) ≥ τ(Ci) ≥ τ(4)

since |Ci | ≥ 4. Thus, Alg. 9 will achieve at least τ(4)× k ≈ 0.74×	(OPT (u)t).

3.3.2 Handling a New Edge

In case where a new edge e = (u, v) connecting two existing vertices u and v

is introduced, we divide it further into two four smaller cases: (1) e is solely inside a

single community C (2) e is within the intersection of two (or more) communities (3) e is

joining two separated communities and (4) e is crossing overlapped communities. If e

is totally inside a community C , its presence will strengthen C ’s internal density and by

Lemma 12, we know that adding e should not split the current community C into smaller

substructures.

In the second subcase, the introduction of the new edge might increase the density

of some part of C and it is reasonable to think of that part (say D) as a new separated

community. However, since D originally shared a significant substructure with C , the

65

merging process will then combine C and D (if they were separated) to be a bigger

community, thus raising the same community as if C was kept intact. Therefore, the

same reaction applies in the second subcase when e is within the intersection of two

communities since their inner densities are both increased. Thus, in these first two

cases, we leave the current network structure intact.

Algorithm 10 Handling a new edge (u, v)

Input: The current community structure Ct−1.
Output: An updated community structure Ct .

1: if ((u, v) ∈ a single community OR (u, v) ∈ Cu ∩ Cv) then
2: Ct ← Ct−1;
3: else if (Com(u) ∩ Com(v) == ∅) then
4: C ← N(u) ∩ N(v);
5: if ((C) ≥ τ(C)) then
6: Define C a new community;
7: Check for combining on Com(u), Com(v) and C ;
8: else
9: for (D ∈ Com(u) (or D∗ ∈ Com(v))) do

10: if ((D ∪ {v}) ≥ τ(D ∪ {v})) (or 	(D ∗ ∪{u}) ≥ τ(D ∗ ∪{v})) then
11: D ← D ∪ {v} (or D∗ ← D ∗ ∪{u})
12: end if
13: end for
14: Merging overlapping communities for D ’s (or D∗);
15: end if
16: Update Ct ;
17: end if

Handling the last two subcases is complicated since any of them can either have no

effect on the current network structure or unpredictably form a new network community,

and furthermore can overlap or merge with the others (Figure 3-4). However, there is

still a possibility that the introduction of this new link, together with some substructure

of Cu or Cv , suffices to form a new community that can overlap with not only Cu and Cv

but also with some of the others. The other subcases can be handled similarly. Alg. 10

describe this procedure.

Lemma 12. If an new edge (u, v) is introduced solely inside a community C , it should

not split C into smaller substructures.

66

(a) (b)

Figure 3-5. Possible scenarios when an existing node is removed.

Proof. Suppose otherwise, that is C is divided into smaller parts C1 and C2. Prior to the

introduction of (u, v), we have 	(C) = 	(C1 ∪ C2) ≥ τ(C) = τ(C1 ∪ C2). Now, when C1

and C2 are formed, they imply that 	(C1 ∪ C2 + (u, v)) < τ(C1 ∪ C2 + (u, v)). Putting all

together, we have τ(C1 ∪ C2 + (u, v)) = τ(C1 ∪ C2) > 	(C1 ∪ C2 + (u, v)) > 	(C) >

τ(C1 ∪ C2), which raises a contradiction. Thus, the conclusion follows.

3.3.3 Removing an Existing Node

When an existing node u is about to be removed from the network, all of its adjacent

edges will also be removed as a consequence. If u is an outlier, we can simply exclude

u and its corresponding links from the current structure and safely keep the network

communities unchanged.

In unfortunate situations where u is not an outlier, the problem becomes very

challenging in the sense that the resulting community is complicated: it can either be

unchanged, or broken into smaller communities, or could probably be further merged

with the other communities. To give a sense of this effect, let’s consider two examples

illustrated in Figure 3-5. In the first example, when C is almost a full clique, the removal

of any node will not break it apart. However, if we a remove node that tends to connect

the others within a community, the leftover module is broken into a smaller one together

with a node that will later be merged to one of its nearby communities. Therefore,

identifying the leftover structure of C is a crucial task once a vertex u in C is removed.

67

To quickly handle this task, we first examine the internal density of C excluding the

removed node u. If the number of internal connections still suffices, e.g., 	(C\{u}) ≥

τ(C\{u}), we can safely keep the current network community structure intact because C

is still tightly connected itself with a sufficient internal density. Otherwise, this community

is of a weak strength and shall be broken into smaller ones. These substructures

might further be merged with other communities if C origianlly overlaps with them. To

efficiently detect these new substructures, we apply Alg. 6 on the subgraph induced by

C\{u} to quickly identify the leftover modules in C , and then let these modules hire a set

of unassigned nodes 	(C) that help them increasing their inner densities. Finally, we

locally check for community combination, if any, by using an algorithm similar to Alg. 7.

Alg. 11 presents the procedure.

Algorithm 11 Removing a node u

Input: The current community structure Ct−1.
Output: An updated structure Ct .

1: for (C ∈ Com(u) and 	(C\{u}) < τ(C\{u})) do
2: LC ← Local communities by Alg 6 on C\{u};
3: for (Ci ∈ LC and |Ci | ≥ 4) do
4: Si ← Nodes such that 	(Ci ∪ Si) ≥ τ(Ci ∪ Si);
5: Ci ← Ci ∪ Si ;
6: end for
7: Merging overlapping communities on LC ;
8: end for
9: Update Ct ;

3.3.4 Removing an Existing Edge

In the last situation when an edge e = (u, v) is about to be removed, we divide it

further into four subcases similar to those of a new edge (1) e is between two disjoint

communities (2) e is inside a sole community (3) e is within the intersection of two (or

more) communities and finally (4) e is crossing overlapping communities.

In the first subcase, when e is crossing two disjoint communities, its removal will

make the network structure more clear (since we now have less connections between

groups), and thus, the current communities should be keep unchanged. When e is

68

(a) (b)

Figure 3-6. Possible scenarios when an existing edge is removed.

totally within a sole community C , handling its removal is complicated since this can lead

to an unpredictable transformation of the host module: C could either be unchanged or

broken into smaller modules if it contains substructures which are less attractive to each

other, as depicted in Figure 3-6. Therefore, the problem of identify the structure of the

remaining module becomes the central part for not only this case but also for the others.

Algorithm 12 Removing an edge (u, v)

Input: The current structure Ct−1.
Output: An updated community structure Ct .

1: if ((u, v) is an isolated edge) then
2: Ct = (Ct−1\{u, v}) ∪ {u} ∪ {v};
3: else if (du = 1 (or dv = 1)) then
4: Ct = (Ct−1\C(u)) ∪ {u} ∪ C(v);
5: else if (C ≡ C(u) ∩ C(v) = ∅) then
6: Ct = Ct−1;
7: else if ((C\(u, v)) < τ(C\(u, v))) then /*Here C ̸= ∅*/
8: LC ← Local communities by Alg 6 on C\(u, v);
9: Define each L ∈ LC a local community of Ct−1;

10: Merging overlapping community on L’s;
11: end if
12: Update Ct ;

To quickly handle these tasks, we first verify the inner density of the remaining

module and, again utilize the local community location method (Alg. 6) to locally

identify the leftover substructures. Next, we check for community combination since

69

these structures can possibly overlap with existing network communities. The detailed

procedure is described in Alg. 12.

3.3.5 Remarks

Note that the ultimate goal of our framework is to adaptively detect and update the

community structure as the network evolves, i.e., to mainly deal with the dynamics of a

mobile network. As a result, we mainly put our focus on AFOCS. Although FOCS, the

first detection phase, appears to be a centralized algorithm, it is executed only once

at the very first network snapshot whereas AFOCS stays up and locally handles all

changes as the network evolves over time. That said, we do not execute FOCS again.

Furthermore, AFOCS can be run independently with FOCS, i.e., one can use any

localized detection algorithm to identify a basic community structure at the first phase.

Thus, AFOCS can be easily apply to solve mobile network problems.

3.3.6 Complexity

Our main algorithm consists of two parts: (1) finding the basic community structure

and (2) updating the network community structure through changes introduced at every

time step. The complexity of quickly unfolding the basic network community structures

has been claimed to be linear in terms of number of nodes and links O(M + N) [3]. To

handle the case of a new node of degree p coming in, our algorithm computes p forces

this new node applies to its neighbors, which results in linear time complexity O(p).

When a new edge connecting nodes u and v is introduced to the network, our algorithm

just simply computes the forces applied to communities adjacency nodes, which takes

O(|C(u)| + |C(v)|) in the best case and O(k × max{|C(u)|, |C(v)|}) in the worst case

when some nodes in a module are pulled out to form new communities (where k is the

number of communities in G). The time taken to handle the last two cases is essentially

the time complexity of the clique percolation, which is roughly O(|C(u)|3) in the worst

case. Although the time complexity is in the third order of number of nodes, the total

nodes inside a single community is relatively small in comparison with the total number

70

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5

N
o
rm

a
liz

e
d
 M

u
lt
u
a
l
In

fo
rm

a
ti
o
n

Overlapping Fraction

0.40
0.50
0.60
0.67
0.70
0.80
0.90

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

0.40
0.50
0.60
0.67
0.70
0.80
0.90

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.1 0.2 0.3 0.4 0.5

0.40
0.50
0.60
0.67
0.70
0.80
0.90

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5

0.40
0.50
0.60
0.67
0.70
0.80
0.90

Figure 3-7. NMI scores for different values of β. N = 5000 (top), N = 1000 (bottom),
µ = 0.1 (left), µ = 0.3 (right).

of vertices N, and thus, does not affect the actual running time. Experimental results in

Section 4 show that our algorithm performs quickly and smoothly in large social online

networks.

3.4 Experimental Results

In this section, we first present the empirical results of AFOCS in comaprison with

two static detection methods: CFinder - the most popular method [42], and COPRA -

the most effective method [47]. We next compare the performance of AFOCS with other

dynamic methods including OSLOM [40], FacetNet [67] and iLCD [39].

Data Sets: We use networks generated by the well-known LFR overlapping

benchmark [3], the ‘de facto’ standard for evaluating overlapping community detection

algorithms. Generated networks follow power-law degree distributions and contain

embedded overlapping communities (the ground truth) of varying sizes that capture the

internal characteristics of real-world networks.

71

 30

 40

 50

 60

 70

 80

 90

 0 0.1 0.2 0.3 0.4 0.5

Overlapping fraction

Ground truth
AFOCS

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
AFOCS

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
AFOCS

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs
 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
AFOCS

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs

A Number of communities

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

Overlapping Fraction

AFOCS
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

AFOCS
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5

AFOCS
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5

AFOCS
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs

B NMI scores

Figure 3-8. Comparison among AFOCS, COPRA and CFinder methods. N = 5000 (top),
N = 1000 (bottom), µ = 0.1 (left), µ = 0.3 (right).

72

Set up: To fairly compare with COPRA and to avoid being biased, we keep the

parameters close to [47]: the minimum and maximum community sizes are cmin = 10

and cmax = 50, each vertex belongs to at most two communities, om = 2. N = 1000

and N = 5000. The mixing rate µ = 0.1 and µ = 0.3. The overlapping fraction γ,

which determines the fraction of overlapped nodes, is from 0 to 0.5. Since COPRA is

nondeterministic, we run it 10 times on each instance and select the best result.

Metrics: We evaluate following metrics.

(1) The generalized Normalized Mutual Information (NMI) [46] specially built for

overlapping communities. NMI scores the similarity between the detected network

communities and the ground truth. This is an standardized measure since NMI(U,V)=1 if

structures U and V are identical and 0 if they are totally separated.

(2) The number of communities, ignoring singleton communities and unassigned

nodes. A good community detection method should produce roughly the same number

of communities with the known ground truth.

3.4.1 Choosing the Overlapping Threshold β

The overlapping threshold β is the only input parameter required by our framework,

and thus, determining its appropriate value plays an important role in assessing

AFOCS’s performance. To best determine this threshold, we run AFOCS on generated

networks with different values of β, and record the similarities between the detected

communities and the ground-truth via NMI scores (Figure 3-7). Of course, the higher

NMI scores imply the better β values.

As a threshold parameter, β controls how much substructure communities can have

in common. The smaller values of β imply the more we allow network communities to

overlap with each other, and vice versa. Similarly, β can be thought of as the zooming

scale of the network structure where lower β’s reveal the coarser and higher β’s reveal

the finer structure. As depicted in Figure 3-7, the best values for β are ranging from 0.67

to 0.80, among which β = 0.70 yields the best community similarity (NMI scores are

73

ranging from 0.8 to 1) in all of the generated networks. Therefore, we fix the overlapping

threshold in AFOCS to be 0.70 hereafter.

3.4.2 Reference to Static Methods

We show our results in groups of four. For each case we vary the overlapping

fraction γ from 0 to 0.5 and analyze the results found by AFOCS, CFinder, COPRA

and (static) OSLOM methods (OSLOMs). We only present results when corresponding

parameters give top performance for CFinder (clique size k = 4, 5) and COPRA (max.

communities per vertex v = 3, 6).

Figure 3-8A shows the number of communities found by AFOCS, COPRA and

CFinder, OSLOMs and the ground truth. It reveals from this figure that the numbers

of communities found by AFOCS, marked with squares, are the closest and almost

identical to the ground truth as the overlapping fraction gets higher. There is an

exception when N = 1000 and µ = 0.3 which we will discuss later. In terms

of NMI scores, as one can infer from Figure 3-8B, AFOCS achieves the highest

performance among all methods with much more stable. A common trend in this

test is the performances of all methods degrade (1) when the mixing rate µ increases,

i.e., when the community structure becomes more ambiguous or (2) when the size of

network decreases while the mixing rate µ stays the same. Even though AFOCS is not

very competitive only when both negative factors happen in the bottom-right char as

N = 1000 and µ = 0.3, it is in general the best performer. OSLOMs , the static version

of OSLOM method, does not appear to perform well on these synthesized data as its

NMI scores are low and degrade quickly when the network communities become more

stochastic. The NMI scores of AFOCS, on the other hand, remain high and stable even

when the network community structure becomes unclear when the overlapping fraction

increases.

The significant gap is observed when the mixing rate gets higher (µ = 0.3) and the

network size gets smaller (N = 1000). AFOCS provides less numbers of communities

74

than those of the ground truth but with much higher overlapping rates. The reason is

with a larger mixing rate µ, a node will have more edges connecting vertices in other

communities, thus increases the chance that AFOCS will merge highly overlapped

communities. Hence, AFOCS creates less but with larger size communities. We note

that this ‘weakness’ of AFOCS is controversial as when the mixing rate increases, the

ground truth does not necessarily coincide with the structure implied by the network’s

topology. Extensive experiments show the ability of AFOCS in identifying high quality

overlapping communities. In addition, we found AFOCS runs substantially faster than

the other competitors: on the Facebook regional network [61] containing 63K nodes,

AFOCS is 150x faster than COPRA while CFinder is unable to finish its tasks.

3.4.3 Reference to Other Dynamic Methods

We next observe the performance of AFOCS in reference to two dynamic methods

FacetNet, iLCD and OSLOM. Since the ground-truth communities are known on

synthesized datasets, fair comparisons among three methods can be obtained via

their NMI scores and running times. Of course, the higher its NMI scores with less time

consuming, the better the method seems to be.

Each synthesized dynamic network is simulated via 5 snapshots, in which the basic

communities are formed by using 50% of the network data with approximately 10%

of the network evolution (node/edge additions and removals) added to each growing

snapshot at a time. Since FacetNet requires the number of communities a priori, we

input this method the actual number as mined form the ground-truth. For iLCD and

OSLOM methods, we keep the default setting as provided in their deliverable.

We first evaluate the objective function, i.e., the total internal density obtained by

all methods in Figure 3-9A. Although internal density is not necessarily the objective

of other methods, this metric can provide us the concept of how strong the community

structure detected by each approach is. As revealed Figure 3-9A, AFOCS obtained the

highest internal density in all tests and is only lagged behind iLCD approach.

75

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

Ψ
(C

)
(N

=
1

0
0
0

,
µ=

0
.1

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5

Ψ
(C

)
(N

=
1

0
0
0

,
µ=

0
.3

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

Ψ
(C

)
(N

=
5

0
0

0
,

µ=
0
.1

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1 2 3 4 5

Ψ
(C

)
(N

=
5

0
0

0
,

µ=
0
.3

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs

A Objective values

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
M

I
(N

=
1
0

0
0

,
µ=

0
.1

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
M

I
(N

=
1
0

0
0

,
µ=

0
.3

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
M

I
(N

=
5
0
0
0
,

µ=
0
.1

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
M

I
(N

=
5
0
0
0
,

µ=
0
.3

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs

B NMI scores

Figure 3-9. Comparison among AFOCS, iLCD, FacetNet and OSLOM dynamic methods.

76

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

#
 o

f
c
o

m
m

u
n
it
ie

s
 (

N
=

1
0

0
0

,
µ=

0
.1

)

Time point

Ground-truth
AFOCS

iLCD
OSLOM

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5

#
 o

f
c
o

m
m

u
n
it
ie

s
 (

N
=

1
0

0
0

,
µ=

0
.3

)

Time point

Ground-truth
AFOCS

iLCD
OSLOM

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5

#
 o

f
c
o

m
m

u
n

it
ie

s
 (

N
=

5
0
0

0
,

µ=
0
.1

)

Time point

Ground-truth
AFOCS

iLCD
OSLOM

 0

 50

 100

 150

 200

 250

 300

 350

 0 1 2 3 4 5

#
 o

f
c
o

m
m

u
n

it
ie

s
 (

N
=

5
0
0

0
,

µ=
0
.3

)

Time point

Ground-truth
AFOCS

iLCD
OSLOM

Figure 3-10. The number of communities obtained by AFOCS, iLCD, FacetNet and
OSLOM and OSLOMs methods.

The NMI scores of four methods are presented in Figure 3-9B and 3-10. It reveals

from these subfigures that the NMI scores of AFOCS are higher than those of FacetNet,

iLCD and OSLOM. In particular, the NMI scores of AFOCS are about just 5-7% lag

behind that of OSLOM and iLCD in the first 2 network snapshots, while are much better

than the others at the end of the evolution. OSLOM’s NMI values are very high at

the very beginning, however, they tend to decrease quickly as more connections and

nodes are introduced. The NMI scores of iLCD and FacetNet tend to fluctuate and also

decrease significantly at the last snapshot. AFOCS, in the other trend, keeps its NMI

scores high and wealthy, especially at the end of the network evolution. This implies

communities discovered by AFOCS are of higher similarity to the ground-truth than

77

the other dynamic methods, especially in the long run. The number of communities

found by all methods are reported in Figure 3-10. Of course, the closer these detected

numbers of communities to the ground-truth, the better the method are believed to be.

As revealed in the subfigures of Figure 3-10, these quantities discovered by AFOCS

tend to closely approach the actually numbers, even when the mixing rates are high

(right figures). The highest similarity between these numbers of communities is possibly

the best explanation for the high NMI scores of AFOCS over the other competitors.

We next take a look at the running time of all methods in these synthesized

networks. AFOCS requires at most 5 seconds to finish updating each network snapshot

whereas FacetNet asks for more than 25 seconds (5x more time consuming) in the

networks with just 5000 nodes. iLCD and OSLOM also perform fast in these generated

datasets; however, the similarity of the detected communities and the ground-truth

is surprisingly poor, as revealed from the results. Therefore, in terms of dynamic

approaches, we strongly believe that AFOCS achieves competitive community detection

results in a timely manner. These results also provide us the confidence when applying

AFOCS to analyze real-world networks.

78

CHAPTER 4
COMMUNITY STRUCTURE DETECTION USING NONNEGATIVE MATRIX

FACTORIZATION

In this chapter, analyze two approaches, namely iSNMF and iANMF, for effectively

identifying social network communities using Nonnegative Matrix Factorization (NMF)

with I-divergence (Kullback-Leibler divergence) as the cost function. Our approaches

work by iteratively factorizing a nonnegative input matrix through derived multiplicative

update rules and the Quasi-Newton method. By doing so, we can not only extract

meaningful overlapping communities via soft community assignments produced by

NMF but also nicely handle both directed and undirected networks with or without

weights. We give the complete multiplicative update rules for factorizing X ≈ HHT

(iSNMF problem) and X ≈ HSHT (iANMF problem) to effectively identify overlapping

communities on social networks. These approaches are topology-independent and their

solutions can be easily interpreted. We provide in detail the foundation properties as

well as the proofs of correctness and convergence of both iSNMF and iANMF problems.

We also propose the Quasi-Newton method to speed up the performance of iSNMF

update rule. Furthermore, we validate the performance of our approaches through

extensive experiments on not only synthesized datasets but also real-world networks.

Empirical results show that iSNMF is among the best efficient detection methods on

undirected networks while iANMF outperforms current available methods in directed

networks, especially in terms of detection quality.

4.1 Problem Definition and Properties

4.1.1 Motivation for NMF in Community Detection

Let us first get some insight about how NMF can be helpful in detecting network

communities, especially overlapping ones. Consider the toy network G = (V ,E)

pictured in Figure 4-1. This network contains clear communities C1 and C2 having node

4 in common. The adjacency matrix X of this ideal network can be represented as

79

C1 C2

1

2

3

5

6

7 8

4

Figure 4-1. An illustrative example motivating NMF in community detection

X =

S1 0

0 S2

, where S1 and S2 are 4 × 4 and 5 × 5 square matrices corresponding to

C1 and C2, respectively. This adjacent matrix X summarizes all the network information

and is the only thing we have. So, how can we derive back the appropriate communities

(or the community indicators) only from this matrix? This is where NMF comes into the

picture and helps. In particular, the special NMF factorization X ≈ HSHT gives us H and

S as the community indicator and the community internal-strength indicator matrices,

respectively. In this example, X ≈ HSHT factorization realizes S = I2 and

HT =

1 1 1 .87 0 0 0 0

0 0 0 .89 0.99 0.99 0.99 0.99

Matrix H clearly indicates that nodes 1-3 should be in a community and nodes 5-8

should belong to another one. H also advises that node 4 should be an overlapping

node due to its significant contribution to both communities. These assignments

indeed reflect the true nodes’ labels. In addition, matrix S indicates that each detected

community attains its perfect internal strength, which intuitively agrees with the original

clique structures. This illustrative example, though simple, motivates the application

80

of the NMF factorization X ≈ HSHT in community detection. Note that when X is

symmetric (i.e., the network is undirected), S is also symmetric and thus, can be further

absorbed into H by the assignment H ← HS1/2. Hence, the problem is reduced to

X ≈ HHT only when X is symmetric.

4.1.2 Problem Definitions

In order to quantify the goodness of the approximation, we use the I-divergence

(Kullback-Leibler (KL) divergence) between two nonnegative matrices A and B

suggested by [68] as

D(A||B) =
∑
ij

(
Aij log

Aij

Bij

− Aij + Bij

)
Due to the inequality x log x ≥ x − 1 ∀x > 0, it is easy to see D(A||B) is lower bounded

by zero and vanishes if and only if A = B. However, unlike the Euclidean distance, this

function is not symmetric in A and B, so we refer to it as the “divergence” from A to B.

The smaller the divergence between A and B, the more similar they are. Therefore, our

objectives seek for the factorizations X ≈ HHT and X ≈ HSTH such that D(X ||HHT)

and D(X ||HSHT) are minimized. Formally, the problems we are interested in can be

stated as follows (here the little “i” comes from the I-divergence)

Problem 1 (iSNMF) Given a nonnegative symmetric matrix X , find a matrix H ≥ 0

that minimizes DX (HH
T) ≡ D(X ||HHT)

Problem 2 (iANMF) Given a nonnegative asymmetric matrix X , find matrices

H,S ≥ 0 that minimize DX (HSH
T) ≡ D(X ||HSHT)

4.1.3 Properties of iSNMF and iANMF factorizations

By Lemma 13, we give important properties of iSNMF and iANMF: the divergences

DX (HH
T) and DX (HSH

T) are convex in S only or H only; however, they are not convex

in both variables together. Although the same observations have been proposed for

the general NMF problem on both Frobenius and I-divergence cost functions [68], no

81

claim has been made particularly for the iSNMF and iANMF problems, especially on the

I-divergence function.

Lemma 13. The divergences DX (HH
T) and DX (HSH

T) in iSNMF and ANMF are convex

in H or S only but not in both S and H together.

Proof. (Convexity in S) Suppose H is a fixed matrix. For any number α, β ∈ [0, 1] and

α+ β = 1, we have

DX (H(αS1 + βS2)H
T) ≤ αDX (HS1H

T) + βDX (HS2H
T),

if and only if

−
∑
ij

log (α[HS1H
T]ij + β[HS2H

T]ij) ≤ −α
∑
ij

log [HS1H
T]ij − β

∑
ij

log [HS2H
T]ij

for any matrices S1,S2 ≥ 0. The later inequality holds true due to the convexity of − log()

function and Jensen’s inequality. Thus, DX (HSH
T) is convex in S when H is fixed.

(Convexity in H) Assume S is a fixed matrix. Rewrite

DX (HSH
T) =

∑
ij

Xij(logXij − 1)−
∑
ij

Xij log [HSH
T]ij +

∑
ij

[HSHT]ij

. Since the first term is a constant and − log() is a convex function, we need to show that

the last term is also convex in H. Let f (H) =
∑

ij [HSH
T]ij . Now,

αf (H1) + βf (H2)− f (αH1 + βH2) = αβ
∑
ij

(
[H1SH

T
1]ij − [H2SH

T
1]ij − [H1SH

T
2]ij + [H2SH

T
2]ij

)
= αβ

∑
ij

[(H1 − H2)S(H1 − H2)
T]ij ≥ 0

(since S ≥ 0 and
∑

ij [AA
T]ij ≥ 0 for any matrix A). This implies the convexity in H of

DX (HSH
T).

The convexity of H in iSNMF is derived similarly as above when S is similar to I , the

identity matrix. The nonconvexity in both S and H follows from the general NMF case

[68].

82

The above properties are nontrivial since they tell us it is unrealistic to solve either

iSNMF or iANMF problem for global minima, and consequently give us the hope to use

other techniques such as Project Gradient [69], Quasi-Newton [70] or particularly the

Alternating Lease Square (ALS) [71] methods to quickly find a local minima. However,

by Lemma 14, we show that for iSNMF and iANMF problems, employing the traditional

ALS does not provide any speed up since we can neither independently update the

columns of S nor H at the same time, thus prevent the employment of this technique to

our problems.

Lemma 14. Employing ALS method does not provide any speed up to either iSNMF or

iANMF.

Proof. Let us first review the ALS method’s working mechanism on the general NMF

problem X ≈WH. Given X ≥ 0, the ALS method does the following steps [72]

1. Randomly initialize W 1
ia ≥ 0,H1

bj ≥ 0, ∀i , a, b, j

2. For k = 1, 2, ... alternatively update W k+1 and Hk+1 by
W k+1 = argminW≥0DX (WHk), and Hk+1 = argminH≥0DX (W

k+1H);

The main idea of the ALS method is to solve each minimization problem as the

collection of several non-negative independent least square problems, due to the

uncorrelated relationship between W and H. For instance, one can write Hk+1 =

argminH≥0D(X ||W k+1H) as Hk+1’s j th column = minh≥0D(x||W k+1
h), where

x is the j th column of X and h is a column vector of appropriate size. Therefore,

each sub-minimization problem requires only the values of a specific column and

consequently can be done in a parallel manner. Since H and HT are strongly related, it

is inappropriate to apply ALS method to iSNMF problem. For ANMF problem, we first

note that [HSHT]ij =
∑

tk HikHjtSkt , which implies an entry in HSHT already requires all

values of S even when H is fixed. Therefore, should one try to update a single column

of S independently as suggested in S-phase of the ALS method, he has to repeatedly

83

solve for all elements Skt ’s, which may incur even more computational requirements.

Thus, the conclusion follows.

4.2 The Update Rule for iSNMF

4.2.1 Multiplicative Update Rule

We present our solution for iSNMF when the input matrix X is symmetric. Formally,

given a nonnegative symmetric matrix X of size n × n and an integer number K ≪ n, we

need to find a nonnegative matrix H of size n × K such that DX (HH
T) ≡ D(X ||HHT) is

minimized.

We solve this problem using the Karush-Kuhn-Tucker (KKT)[73] conditions. In

particular, we introduce the Lagrange multipliers αij for the constraints Hij ≥ 0 and

consider the objective function J = D(X ||HHT)−
∑

ij αijHij , or,

J =
∑
ij

(
Xij log

Xij

[HHT]ij
− Xij + [HHT]ij

)
−
∑
ij

αijHij

The KKT conditions require

∂J

∂Hab

= 0 (or
∂DX (]HH

T)

∂Hab

= αab)

as the optimality condition and

αabHab = 0

as a complementary slackness condition for any Hab.

For the ease of computation, we construct the derivative matrix HHT with respect to

Hab in Figure 4-2. For each position (a, b), this derivative matrix is zero elsewhere except

for the ath column and ath row whose elements are from the bth column of H. Using this

matrix, we obtain
∂DX (HH

T)

∂Hab

= 2

(∑
k

Hkb −
∑
k

Hkb

Xak

[HHT]ak

)
. (4–1)

84

Hkb

(k=1 ..N)

ath column

ath row

2Hab

HHT

Figure 4-2. The partial derivative matrix of HHT with respect to Hab.

Hence, the optimality condition implies

αab = 2(
∑
k

Hkb −
∑
k

Hkb

Xak

[HHT]ak
),

and thus, the complementary slackness condition requires

2
(∑

k

Hkb −
∑
k

Hkb

Xak

[HHT]ak

)
Hab = 0,

which suggests the following update rule

Hab ← Hab

∑
k HkbXak/[HH

T]ak∑
t Htb

. (4–2)

In terms of projected gradient method, the rule above can be obtained by using the

update rule

Hab ← Hab − νab
∂DX (HH

T)

∂Hab

,

with the magnitude νab set to some appropriate small positive number. Here, setting

νab =
Hab

2
∑

t Htb

85

leads to the same update rule as (4–2).

The iSNMF community detection algorithm is described in Alg. 13. Here, n0 is

the maximum number of iterations, ϵ is the allowed threshold for the quality of iSNMF

approximation and α is a given scale to determine community memberships. We

assume that K , the number of communities, is predetermined or given as part of the

input. Also, the choice of α will be described later.

Algorithm 13 SNMF for community detection
Input: Undirected, unweighted (weighted) adjacent matrix X , K , n0, ϵ, α;
Output: Community indicator matrix H;

1: Initialize H to be a random nongnegative matrix;
2: iter ← 0;
3: while (iter ≤ n0) and (DX (HH

T) > γ) do
4: Update Hab ← Hab

∑
k HkbXak/[HH

T]ak∑
t Htb

;
5: iter ← iter + 1;
6: end while
7: % Inferring community labels from H%
8: Cb ← ∅ ∀b = 1...K ;
9: P ← normalized(H);

10: for b ← 1...p do
11: if P(a, b) ≥ α ∗max(P(a, :)) then
12: Cb ← Cb ∪ {a};
13: end if
14: end for

Remark

In contrast to those update rules found in [68], we have shown an important fact:

These rules can be derived similarly for this special case. However, our multiplicative

update rule (4–2) is not trivial in the sense that we can obtain the convergence proof for

our proposed rule whereas one may find it inappropriate to adapt the proof of [68][74]

which assumed absolutely no correlation between W and H.

Analysis

We provide the convergence analysis for our proposed update rule (4–2) using an

auxiliary function defined as follow:

86

(Auxiliary function) G(h, h̃) is the auxiliary function for F (h) if the conditions

G(h, h̃) ≥ F (h) and G(h, h) = F (h) are satisfied

Lemma 15. [68] If G is an auxiliary function, then F is nonincreasing under the update

ht+1 = argminh G(h, h̃).

To prove the convergence of the proposed multiplicative update rule, we construct

an auxiliary function G(H, H̃) of F (H) ≡ DX (HH
T) as follow

G(H, H̃) =
∑
ij

(
Xij logXij − Xij + [HHT]ij

)
−

∑
ijk

Xij

HikH̃jk∑
t HitH̃jt

(
logHikHjk − log

HikH̃jk∑
t HitH̃jt

)

Theorem 4.1. The divergence DX (HH
T) is nonincreasing under the update rule (4–2)

and is invariant when H is at its stationary point of the divergence.

Proof. When H̃ = H, it is easy to verify that G(H,H) = F (H), thus we only need to

check G(H, H̃) ≥ F (H). Now, G(H, H̃) ≥ F (H) iff

−
∑
ijk

Xij

HikH̃jk∑
t HitH̃jt

(
logHikHjk − log

HikH̃jk∑
t HitH̃jt

)
≥ −

∑
ij

Xij log[HH
T]ij = −

∑
ij

Xij log
(∑

k

HikHjk

)
⇐⇒ −

∑
ijk

Xij

HikH̃jk∑
t HitH̃jt

(
log

HikHjk ×
∑

t HitH̃jt

HikH̃jk

)
≥ −

∑
ij

Xij log
(∑

k

HikHjk

)
.

To prove the above inequality, we apply Jensen’s inequality to the convex function

− log
(∑

k HikHjk

)
, yielding

− log
∑
k

αk

HikHjk

αk

≤ −
∑
k

αk log
HikHjk

αk

,

where αk ≡ αijk =
Hik H̃jk∑
t Hit H̃jt

. It is obvious that αk ’s are nonnegative and sum up to unity.

Thus, we have G(H, H̃) ≥ F (H). Taking the derivative of G(H, H̃) with respect to H also

gives the same update rule (4–2).

87

4.2.2 Quasi-Newton Method for iSNMF

One of the problems with the multiplicative update rule is its slow convergence,

i.e., it does converge to (possible) stationary point but may be slow, taking more

iterations and time, as well as easily getting into local minima trap [72]. One way to

speed up the convergence is to adjust the learning rate in a sequential manner, using

the second-order estimate of the objective function, e.g. the Quasi-Newton method. In

[70], the authors already addressed this method for the general NMF X ≈ WH but with

the uncorrelated relationship assumption between W and H. Obviously, that assumption

does not hold when X ≈ HHT and hence, it is not trivial to derive proper Quasi-Newton

formulation for iSNMF problem. In fact, we show that the second-order, or Hessian,

matrix H(H)
DX

of iSNMF is much different from that of the general NMF.

The general Quasi-Newton method, when applied to iSNMF problem, takes the form

H ← max

{
H − [H(H)

DX
]−1∂DX

∂H
, ϵ

}
, (4–3)

where DX is short for DX (HH
T), ∂DX

∂H
is the n × K first-order matrix of DX (HH

T) w.r.t H,

H(H)
DX

is the nK × nK second-order derivative (or Hessian) matrix of DX w.r.t to H and ϵ

is a small nonnegative number to enforce the nonnegativity of H. Thanks to equation

(4–1), the first-order derivative matrix ∂DX

∂H
can be found as

∂DX

∂H
= 2

(
1− X ./HHT

)
H,

where 1 is a N × N matrix of all 1’s and ./ is the Hadamard (element-wise) division. For

any pair (i , j), the Hessian matrix H(H)
DX

can be found by: [H(H)
DX

]ij =
∂DX

∂HijHab
=

2
(
1− Xii ([HH

T]ii−2H2
ij
)

[HHT]2
ii

+
∑

k ̸=i
H2
ik
Xik

[HHT]2
ik

)
a = i , b = j

2
(2HibHijXii

[HHT]2
ii

+
∑

k ̸=i
HkbHkjXik

[HHT]2
ik

)
a = i , b ̸= j

2
(
1− Xak([HH

T]ai−HijHaj)

[HHT]2
ai

)
a ̸= i , b = j

2
(
HibHajXai

[HHT]2
ai

)
a ̸= i , b ̸= j

(4–4)

88

There are two important differences between the Hessian HNMF for the general

case [70] and H(H)
DX

. Firstly, HNMF ’s elements are zeros everywhere except when

a = i , b = j whereas H(H)
DX

obtains values for all combinations of a, b, i and j . Secondly,

due to its sparseness, HNMF can be written under matrix block form while H(H)
DX

might not

be, particularly when it is a full matrix. Therefore, updating H in iSNMF problem is much

more complicated than usual since finding [H(H)
DX

]−1 in (4–3) shall require more numerical

computations.

The authors in [70] also proposed a numerical technique to overcome the

ill-conditioned Hessian matrix and to speed up the computing process, which we

find it useful when applied to our problems. Here, we briefly state their technique so that

the paper is self-contained (note that (4–5) and (4–6) are not our equations): To reduce

the computational cost, the inversion of the Hessian is replaced with the Q-less QR

factorization computed by LAPACK. The final form of the Quasi-Newton method is

H ← max
{
H − γRH |WH , ϵ

}
(4–5)

WH = QT
H

∂DX

∂H
, QHRH = H(H)

DX
+ λIH (4–6)

where IH is the nK × nK identical matrix, γ = 10−12 and λ = 0.9 are the small fixed

regularization and the relax parameters, respectively. The | operator in (4–5) means the

Gaussian elimination.

4.3 Update Rules for iANMF

4.3.1 Multiplicative Update Rules

In this section, we present our solution for the iANMF problem when X is not

symmetric. Formally, given a nonegative asymmetric matrix X of size n × N, we

find nonnegative matrices H and S of size n × K and K × K , respectively, such that

DX (HSH
T) ≡ D(X ||HSHT) is minimized. We again solve this problem using the

KKT conditions by introducing the Lagrange multipliers αij and βij for the constraints

89

Hij ≥ 0 and Sij ≥ 0, respectively, and then consider the objective function J =

D(X ||HSHT)−
∑

ij αijHij −
∑

ij βijSij . Equivalently, J can be written as

J =
∑
ij

(
Xij log

Xij

[HSHT]ij
− Xij + [HSHT]ij

)
−
∑
ij

αijHij −
∑
ij

βijSij .

The KKT conditions require
∂J

∂Hab

= 0 and
∂J

∂Sab
= 0,

or equivalently,
∂DX (HSH

T)

∂Hab

= αab and
∂DX (HSH

T)

∂Sab
= βab

as the optimality conditions, as well as

αabHab = 0 and βabSab

as a complementary slackness condition for any Hab and Sab. For the ease of computation,

we construct the matrix for finding the derivative of an entry [HSHT]ij with respect to any

Hab in Figure 4-3. Here r(A, i) and c(B, j) mean the i th row of A and j th column of B,

respectively. Elements outside of the plotted column and row are zeros. The elements

of this matrix are zeros elsewhere except for the ath column and ath row. Using this

conventional partial derivative matrix, we obtain

∂
∑

ij Xij log [HSH
T]ij

∂Hab

=
∑
k

Xka

[HS]kb
[HSHT]ka

+
∑
k

Xak

[SHT]bk
[HSHT]ak

and
∂
∑

ij [HSH
T]ij

∂Hab

=
∑
k

([HS]kb + [SHT]bk)

90

ath column

ath row

HSHT

r(H,1)×c(S,b)

r(H,2)×c(S,b)

r(H,3)×c(S,b)

r(H,n)×c(S,b)

r(S,b)×c(HT,1) r(S,b)× c(HT,2) r(S,b)×c(HT,n) … …

…

…

 r(H,a)×c(S,b) + r(S,b)×c(HT,a)

Figure 4-3. The partial derivative matrix of HSHT with respect to Hab.

Therefore,

∂DX (HSH
T)

∂Hab

=
−∂

∑
Xij log [HSH

T]ij +
∑

[HSHT]ij
∂Hab

= −
∑
k

Xka

[HS]kb
[HSHT]ka

−
∑
k

Xak

[SHT]bk
[HSHT]ak

+
∑
k

([HS]kb + [SHT]bk). (4–7)

The optimality condition ∂DX (HSH
T)

∂Hab
= αab and the complementary slackness condition

αabHab = 0 together give the following update rule for Hab

Hab ← Hab

(∑
k Xka[HS]kb/[HSH

T]ka∑
t [HS]tb + [SHT]bt

+

∑
k Xak [SH

T]bk/[HSH
T]ak∑

t [HS]tb + [SHT]bt

)
(4–8)

Alternatively, this update rule can also be achieved by using projected gradient

method, in particular by updating

Hab ← Hab − νab
∂DX (HSH

T)

∂Hab

with the magnitude

νab =
Hab∑

t([HS]tb + [SHT]bt)
.

91

Now we give the multiplicative update rule for any Sab. The partial derivative of

DX (HSH
T) w.r.t Sab is derived as

∂DX (HSH
T)

∂Sab
=

∑
st

HsaHtb −
∑
st

Xst

HsaHtb

[HSHT]st

The KKT conditions ∂DX (HSH
T)

∂Sab
= βab and βabSab = 0 together imply the following update

rule for Sab

Sab ← Sab

∑
st HsaHtb(Xst/[HSH

T]st)∑
st HsaHtb

(4–9)

Alternatively, this rule can be derived by the projected gradient method

Sab ← Sab − νab
∂DX (HSH

T)

∂Sab

with magnitude

γab =
Sab∑

st HsaHtb

.

The iANMF community detection is presented in Alg. 14. The parameters and their

meanings in this case are similar to those described in the SNMF case.

Algorithm 14 iANMF for community detection
Input: Directed, unweighted (weighted) adjacent matrix X , K , n0, ϵ, α;
Output: Matrices H and S and the inferred community labels;

1: Initialize H and S to be a random nongnegative matrices;
2: iter ← 0
3: while (iter ≤ n0) and (DX (HH

T) > γ) do
4: Update Hab based on equation (4–8);
5: Update Sab based on equation (4–9);
6: iter ← iter + 1;
7: end while
8: % Inferring community labels from H%
9: Cb ← ∅ ∀b = 1...K ;

10: P ← normalized(H);
11: for b ← 1...K do
12: if P(a, b) ≥ α ∗max(P(a, :)) then
13: Cb ← Cb ∪ {a};
14: end if
15: end for

92

Summary

With the multiplicative update rules (4–8) and (4–9), we give the complete steps

for iteratively solving iANMF problem with respect to the I-divergence. These rules are

different from what have been discovered in prior studies and, to our knowledge, have

not yet been derived in the literature. Thus, they are our contributions in this paper.

Analysis

We first show the following result

Theorem 4.2. At the stationary point (H,S) of DX (HSH
T), KKT conditions imply that

∑
st

Xst =
∑
st

[HSHT]st

Proof. We show that the condition Sab
∂DX (HSH

T)
∂Sab

= 0 imply the above equality. In

particular, the KKT condition equals to

Sab
∑
st

HsaHtb = Sab
∑
st

Xst

HsaHtb

[HSHT]st
.

Summing over all a and b of the LHS gives

∑
ab

Sab
∑
st

HsaHtb =
∑
st

∑
ab

HsaSabHtb =
∑
st

[HSHT]st .

Similarly, summing over all a and b of the RHS gives

∑
ab

∑
st

Xst

HsaHtb

[HSHT]st
=

∑
st

Xst

[HSHT]st
[HSHT]st

=
∑
st

Xst .

Therefore, the equality follows.

We next analyze the convergence analysis of our proposed rules (4–8) and (4–9).

By using appropriate auxiliary functions G(S , S̃) and G(H, H̃), one can show the

following

Theorem 4.3. The divergence D(X ||HSHT) is nonincreasing under the update rules

(4–8) and (4–9) and is invariant if and only if S and H are at their stationary points in the

divergence.

93

Proof. The proof of convergence for the two update rules (4–8) and (4–9) is similar to

Theorem 4.1. Let us first define two functions

G(S , S̃) =
∑
ij

Xij(logXij − 1) +
∑
ij

[HSHT]ij −
∑
ij

Xijβijuv(logHivSvuHju − log βijuv),

and G(H, H̃) =
∑
ij

Xij(logXij − 1) +
∑
ij

[HSHT]ij −
∑
ij

Xijξijuv(logHivSvuHju − log ξijuv).

where βijuv =
Hiv S̃vuHju∑
st Hit S̃tsHjs

, ξijuv =
HivSvuH̃ju∑
st HitStsH̃js

.

It is clear that each βijuv ’s and ξijuv ’s are nonzero and sum up to unity. We now prove

the convergence of rule (4–9) for S when matrix H is fixed. Let F (S) = DX (HSH
T). We

show that G(S , S̃) defined above is an auxiliary function for F (S). When S̃ = S , one

can verify that G(S , S̃) = F (S), thus we need to check G(S , S̃) ≥ F (H). This inequality

equals to

−
∑
ij

Xij log [HSH
T]ij ≤ −

∑
ij

Xijβijuv(logHivSvuHju − log βijuv)

By the definition of βijuv , one can rewrite the above inequality as

− log
∑
ij

βijuv
HivSuvHju

βijuv
≤ −

∑
ij

βijuv log
HivSvuHju

βijuv

which generally holds true due to Jensen’s inequality and the convexity of − log()

function. Now, taking the derivative of G(S , S̃) with respect to S gives the update rule

(4–9). The proof for H can be obtained in a very similar manner with and thus, is omitted

here.

4.4 Experimental Results

In this section, we first validate our approaches on different synthesized networks

with known ground-truths, and then present our findings on real-world traces including

the Enron email [31] and Facebook social network [75]. To certify our performance, we

94

compare the results to two NMF methods proposed in [10] (i.e., wSNMF and wANMF),

and the recently suggested Bayesian NMF [14] (i.e., Bayesian method).

Our methods require the number of communities K as an input parameter. We

stress that determining this quantity is not the main focus of NMF-based detection

methods since almost all of them rely on a predefined K to discover the network

communities, as commonly observed in [10][11][36]. Thefore, this quantity K is

predetermined using a procedure suggested in [76], which has been shown to

well-predict the number of network communities in a timely manner. We also use

this value as input for wSNMF and wANMF. For the Bayesian method, we keep the

default settings as provided in its deliverable.

4.4.1 Empirical Results on Synthesized Networks

Of course, the best way to evaluate our approaches is to validate them on real-world

networks with known community structures. Unfortunately, we often do not know that

structures beforehand, or such structures cannot be easily mined from the network

topologies. Although synthesized networks might not reflect all the statistical properties

of real ones, they can provide us the known ground-truths via planted communities and

the ability to vary other network parameters such as sizes, densities and overlapping

levels, etc. Testing community detection methods on generated data has becomes a

usual practice that is widely accepted in the field [3]. Therefore, running iSNMF and

iANMF on synthesized networks not only certifies their performance but also provides us

the confidence to their behaviors when applied to real-world traces.

Set up: We use the well-known LFR overlapping benchmark [77] to generate 22

weighted directed and undirected testbeds. Generated networks follow the power-law

degree distribution and contain embedded overlapping communities of varying sizes

that capture the internal characteristics of real-world networks. Parameters are: the

number of nodes N = 1000, the mixing parameter µ = 0.1 and 0.3 controlling the overall

sharpness of the community structure, the weight mixing µw = 0.1 and 0.3, the minimum

95

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

N
M

I
(µ

 =
 0

.1
)

Overlapping Threshold (a)

iSNMF
wSNMF

Bayes
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

N
M

I
(µ

 =
 0

.3
)

Overlapping Threshold (b)

iSNMF
wSNMF

Bayes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

N
M

I
(µ

 =
 0

.1
)

Overlapping Threshold (c)

iANMF
wANMF

Bayes
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

N
M

I
(µ

 =
 0

.3
)

Overlapping Threshold (d)

iANMF
wANMF

Bayes

Figure 4-4. Normalized Mutual Information scores on synthesized networks

and maximum community sizes cmin = 10 and cmax = 50, the maximum memberships of

a node om = 2, and the overlapping fraction γ ∈ [0, 0.5] measuring the fraction of nodes

with memberships in more than communities. We set the number of iterations to 400 in

all methods and run 22 tests 100 times for consistency.

Metric: To measure the similarity between detected communities and the

embedded ground-truth, we evaluate Generalized Normalized Mutual Information

(NMI) [46]. NMI (U,V) is 1 if structures U and V are identical and is 0 if they are totally

separated. This is the most important metric for a community detection algorithm

because it indicates how good the algorithm is in comparison with the true communities.

The higher the NMI value to the ground-truth, the better.

Detection quality: As depicted in Figure 4-4, our approaches iSNMF and iANMF

achieve the most stable and competitive (if not to say the best) NMI scores on both

96

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5

N
u

m
b

e
r

o
f

c
o

m
m

u
n

it
ie

s
 (

µ
 =

 0
.1

)

Overlapping Threshold (e)

iSNMF
wSNMF

Bayes
GroundTruth

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 0.1 0.2 0.3 0.4 0.5

N
u

m
b

e
r

o
f

c
o

m
m

u
n

it
ie

s
 (

µ
 =

 0
.3

)

Overlapping Threshold (f)

iSNMF
wSNMF

Bayes
GroundTruth

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 0.1 0.2 0.3 0.4 0.5

N
u

m
b

e
r

o
f

c
o

m
m

u
n

it
ie

s
 (

µ
 =

 0
.1

)

Overlapping Threshold (g)

iANMF
wANMF

Bayes
GroundTruth

 35

 40

 45

 50

 55

 60

 65

 70

 0 0.1 0.2 0.3 0.4 0.5

N
u

m
b

e
r

o
f

c
o

m
m

u
n

it
ie

s
 (

µ
 =

 0
.3

)

Overlapping Threshold (h)

iANMF
wANMF

Bayes
GroundTruth

Figure 4-5. Number of communities on synthesized networks

weighted directed and undirected networks. In particular, on undirected networks (top

2 figures), NMI scores produced by iSNMF are highly competitive to those of wSNMF

and are up to 84% better than those returned by the Bayesian method. Moreover, its

NMI scores still remains high and balance as the mixing overlapping ratio γ increases.

This means the communities discovered by iSNMF are consistently of high similarity to

the ground-truth even when more and more network communities are overlapped with

each other. wSNMF also displays these properties on undirected networks; however, its

performance degrades significantly on directed weighted networks, as we will discuss

shortly. The Bayesian method, on the other hand, produces very low NMI values that

tend to decrease quickly as γ increases. This implies communities detected by this

method are not ideally coincident with the embedded ones, especially when they highly

overlap with each other.

97

There is a close relationship between the number of communities and the

identification capacity that we observed in the case of undirected networks in Figure

4-5. As revealed in its top figures, the input numbers of communities for iSNMF and

iSNMF are almost identical to the ground-truth when µ = 0.1 and slightly deviate from

them when µ = 0.3, while those of the Bayesian method are far away from the baseline.

This close relationship, as a result, helps iSNMF and wSNMF to determine a proper

number of basic features and consequently, indicate more appropriate community labels.

However, this observation does not appear to hold for wANMF on directed networks

since it performs poorly whereas our approach iANMF still performs excellently on

this type of networks (Figure 4-4, bottom figures). The big gap between the Bayesian

method and the ground-truth implies its built-in estimate of the number of communities

could potentially mislead the factorization, thus results in its low NMI scores.

The superiority of our iANMF approach becomes more visible on directed weighted

networks (Figure 4-4, bottom figures). In these figures, iANMF returns the best

stable NMI values and they remain wealthy even when γ evolves, i.e., when strongly

overlapped communities appear. In particular, the NMI scores returned by iANMF

are more than twice those of wANMF and are up to 10% those of Bayesian method.

The performance of wANMF, surprisingly, reduces to no more than half of its prior

achievement even when fed with the relatively close number of true communities

(bottom figures of Figure 4-5). This in turn indicates the communities discovered by

wANMF are heavily deviated from and are of very low similarity to the ground-truth.

Bayesian method’s performance is somehow the same on these directed networks with

average NMI scores tend to quickly decrease in the long run. This comparison among

three NMF factorizations reveals that iSNMF and iANMF are the best ideal methods

for effectively recovering the overlapped network community structures, especially on

weighted and directed networks.

98

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5

R
u

n
n

in
g

 T
im

e
 (

µ
 =

 0
.1

)

Overlapping Threshold (a)

iSNMF
wSNMF

Bayes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.1 0.2 0.3 0.4 0.5

R
u

n
n

in
g

 T
im

e
 (

µ
 =

 0
.3

)

Overlapping Threshold (a)

iSNMF
wSNMF

Bayes

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5

R
u

n
n

in
g

 T
im

e
 (

µ
 =

 0
.1

)

Overlapping Threshold (a)

iANMF
wANMF

Bayes

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5

R
u

n
n

in
g

 T
im

e
 (

µ
 =

 0
.3

)

Overlapping Threshold (a)

iANMF
wANMF

Bayes

Figure 4-6. Running Time on synthesized networks

We next compare the running time of three methods. As reported in Figure 4-6,

the running times of iSNMF and wSNMF on undirected networks are fairly similar to

each other (at most 2s difference) and are much less than the huge time requirement

of the Bayesian method. In average, the Bayesian method requires almost 200s in

order to finish the test whereas iSNMF and wSNMF only ask for roughly 16s and

14s, respectively. On directed networks, iANMF requires nearly the same amount

of time of the Bayesian method and much more time than wANMF. Note that this

time consumption of iANMF is quite understandable because each update for Sab

in equation (4–9) based on the I-divergence already took O(n2) time. However, the

superiority of its produced NMI scores to other competitors makes iANMF a promising

approach, especially suited for those who strive to discover excellent network community

structures.

99

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5

N
u
m

b
e
r

o
f
C

o
m

m
u
n
it
ie

s

Top 5 Communities

Enron

Facebook-like

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 3 4 5

C
o
m

m
u
n
it
y
 D

e
n
s
it
y

Top 5 Communities

Enron

Facebook-like

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 3 4 5

O
v
e
rl
a
p
p
in

g
 R

a
ti
o

Top 5 Communities

Enron

Facebook-like

Figure 4-7. The number of communities, Internal density and Overlapping ratio of Enron
email and Facebook-like datasets

In summary, comparisons among three algorithms on generated networks show

that (1) iSNMF is among the best NMF methods for efficiently identify high quality

overlapping communities in weighted and unweighted undirected networks (2) iANMF is

the best among three methods for analyzing weighted and directed networks containing

highly overlapped communities, despite it long running time. More importantly, the

performance of both approaches remains healthily stable even when more and more

overlapping communities are introduced. These results provide us the strong confidence

when applying iSNMF and iANMF to analyze the real-world traces.

4.4.2 Results on Real Networks

We next utilize iANMF and iSNMF to analyze the real network datasets and present

our findings on their overlapping structures. In particular, we choose the Enron email

dataset and the Facebook-like social network [75]. The Enron email network contains

email messages data from about 150 users, mostly senior management of Enron Inc.,

from Jan 1999 to July 2002 [31]. Each email address is represented by an unique

identification number in the dataset and each link corresponds to a message sent

between the sender and the receiver. The Facebook-like social network is collected from

students of University of California, Irvine. The dataset contains 20296 messages sent

and received among 1899 users. The number of communities inputed for Enron email

and Facebook-like datasets are set to 8 and 18, respectively.

100

We are interested in understanding their overlapping structures and what the

overlapping nodes really mean to them, particularly in the top 5 biggest communities. As

revealed in Figure 4-7, the numbers of members in top 5 communities of Facebook-like

network are, not surprisingly, much bigger are those of the Enron email network.

However, the internal density, i.e., the inner structures of those top 5 communities in

Enron emails are much stronger than those of Facebook networks. Indeed, the density

values of Enron email communities are more than twice of Facebook networks. This can

be explained as email communication in a work place among managers occurs much

more frequently than messages on a social environment like the Facebook network.

We next investigate on the overlapping substructures of these real networks, i.e., we

want to know how much they are overlapped and what the overlapped nodes mean to

the communities. As described in Figure 4-7, all 5 top communities of Facebook network

are highly overlapped whereas just 3 top communities of Enron email network appear

to have this properties. Moreover, overlapped nodes on Facebook network tend to be

active users who eagerly participate in multiple communities at the same time, i.e., they

send messages to multiple friends in different groups. Overlapped nodes on Enron email

network, though fewer, suggest that they potentially play vital roles in the company since

most of them communicate frequently many other members in all of the communities.

101

CHAPTER 5
SOCIAL-AWARE ROUTING STRATEGIES IN MOBILE AD-HOC NETWORKS

In this chapter, we demonstrate the applicability of our proposed detection

algorithms QCA and AFOCS as the community identification cores in forwarding

and routing strategies in mobile dynamic networks. In the following paragraphs, we first

present the application of QCA and then describe how AFOCS can help to improve the

performance of this practical applications.

5.1 A Message Forwarding and Routing Strategy Employing QCA

In a broad view, a MANET is a dynamic wireless network with or without the

underlying infrastructure, in which each node can move freely in any direction and

organize itself in an arbitrary manner. Due to nodes mobility and unstable links nature of

a MANET, designing an efficient routing scheme has become one of the most important

and challenging problems on MANETs. Recent researches have shown that MANETs

exhibit the properties of social networks [78][79][80] and social-aware algorithms

for network routing are of great potential. This is due to the fact that people have a

natural tendency to form groups or communities in communication networks, where

individuals inside each community communicate with each other more frequent than

with people outside. This social property is nicely reflected to the underlying MANETs

by the existence of groups of nodes where each group is densely connected inside than

outside. This resembles the idea of community structure in Mobile Ad hoc Networks.

Multiple routing strategies [79]-[81] based on the discovery of network community

structures have provided significant enhancement over traditional methods. However,

the community detection methods utilized in those strategies are not applicable for

dynamic MANETs since they have to recompute the network structure whenever

changes to the network topology are introduced, which results in significant computational

costs and processing time. Therefore, employing an adaptive community structure

102

detection algorithm as a core will provide a speedup as well as robust to routing

strategies in MANETs.

We evaluate five routing strategies (1) WAIT: the source node waits until it meets

the destination node (2) MCP: A node keeps forwarding the messages until they reach

the maximum number of hops (3) LABEL: A node forwards or sends the messages to all

members in the destination community [78] (4) QCA: A Label version utilizing QCA as

the dynamic community detection method and lastly, (5) MIEN: A social-aware routing

strategy on MANETs [35].

Even though WAIT and MCP algorithms are very simple and straightforward to

understand, they provide us helpful information about the lower and upper bounds on

the message delivery ratio, time redundancy as well as message redundancy. The

LABEL forwarding strategy works as follow: it first finds the community structure of the

underlying MANET, assigns each community with the same label and then exclusively

forwards messages to destinations, or to next-hop nodes having the same labels as the

destinations. MIEN forwarding method utilizes MIEN algorithm as a subroutine. QCA

routing strategy, instead of using a static community detection method, employs QCA

algorithm for adaptively updating the network community structure and then uses the

newly updated structure to inform the routing strategy for forwarding messages.

5.1.1 Setup

We choose Reality Mining data set [82] provided by the MIT Media Lab to test our

proposed algorithm. The Reality Mining data set contains communication, proximity,

location, and activity information from 100 students at MIT over the course of the

2004-2005 academic year. In particular, the data set includes call logs, Bluetooth

devices in proximity, cell tower IDs, application usage, and phone status (such as

charging and idle) of the participated students of over 350,000 hours (4̃0 years). In this

paper, we take into account the Bluetooth information to form the underlying MANET

and evaluate the performance of the above five routing strategies.

103

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

A Delivery Ratio

 250

 300

 350

 400

 450

 500

 5 10 15 20 25 30 35 40 45

Time-to-live

LABEL
MIEN
QCA

B Average Duplicate Message

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

C Average Delivery Time

Figure 5-1. Experimental results on the Reality Mining data set

104

5.1.2 Results

For each routing method, we evaluate the followings (1) Delivery ratio: The portion

of successfully delivered over the total number of messages (2) Average delivery

time: Average time for a message to be delivered. (3) Average number of duplicated

messages for each sent message. In particular, a total of 1000 messages are created

and uniformly distributed during the experiment duration and each message can not

exist longer than a threshold time-to-live. The experimental results are shown in Figure

5− 1A, 5− 1B and 5− 1C .

Figure 5− 1A describes the delivery ratio as a function of time-to-live. As revealed

by this figure, QCA achieves much better delivery ratio than MIEN as well as LABEL and

far better than WAIT. This means that QCA routing strategy successfully delivers many

more messages from the source nodes to the destinations than the others. Moreover, as

time-to-live increases, the delivery ratio of QCA tends to approximate the ratio of MCP,

the strategy with highest delivery ratio.

Comparison on delivery time shows that QCA requires less time and gets

messages delivered successfully faster than LABEL, as depicted in Figure 5− 1C .

It even requires less delivery time in comparison with the social-aware method MIEN.

This can be explained as the static community structures in LABEL can possibly get

message forwarded to a wrong community when the destinations eventually change

their communities during the experiment. Both QCA and MIEN, on the other hand,

captures and updates the community structures on-the-fly as changes occur, thus

achieves better results.

The numbers of duplicate messages presented in Figure 5− 1B indicate that both

QCA and MIEN achieves the best results. The numbers of duplicated messages of MCP

method are substantially higher than those of the others and are not plotted. In fact, the

results of QCA and MIEN are relatively close and tend to approximate each other as

time-to-live increases.

105

In conclusion, QCA is the best social-aware routing algorithm among five routing

strategies since its delivery ratio, delivery time, and redundancy outperform those of

the other methods and are only below MCP while the number of duplicate messages is

much lower. QCA also shows a significant improvement over the naive LABEL method

which uses a static community detection method and thus, confirms the applicability of

our adaptive algorithm to routing strategies in MANETs.

5.2 A Message Forwarding and Routing Strategy Employing AFOCS

We present a practical application where the detection of overlapping network

communities plays a vital role in forwarding strategies in communication networks. With

the helpful knowledge of the network community structure discovered by AFOCS, we

propose a new community-based forwarding algorithm that significantly reduces the

number of duplicate messages while maintaining competitive delivery times and ratios,

which are essential factors of a forwarding strategy.

5.2.1 Message Forwarding Strategy

Let us first discuss how our new forwarding algorithm works in practice and then

how AFOCS helps it to overcome the above limitations. We use AFOCS to detect

overlapping communities and keep it up-to-date as the network changes. Each node

in a community is assigned the same label and each overlapped node u has a set of

corresponding labels Com(u). During the network operation, if a devices u carrying the

message meets another device v who indeed shares more common community labels

with the destination than u, i.e., |Com(v) ∩ Com(dest)| > |Com(u) ∩ Com(dest)|, then

u will forward the message to v . The same actions then apply to v as well as to devices

that v meets.

The intuition behinds this strategy is that if v shares more communities with the

destination nodes, it is likely that v will have more chances to deliver the message

to the destination. By doing in this way, we not only have higher chances to correctly

forward the messages but also generate much less duplicate messages. Due to its

106

adaptive nature and the ability of identifying overlapping communities, AFOCS helps

our algorithm to overcome the above shortcomings naturally. This explains why our

forwarding algorithm can significantly reduce the number of duplicate messages while

maintaining very competitive delivery times and ratios.

5.2.2 Setup

We compare six forwarding strategies (1) MIEN: A recently proposed social-aware

routing strategy on MANETs [35] (2) LABEL: A node will forward the messages to

another node if it is in the same community as the destination [78] (3) WAIT: The source

node waits and keeps forwarding the message until it meets the destination (4) MCP: A

node keeps forwarding the messages until they reach the maximum number of hops (5)

QCA: A LABEL version utilizing QCA [17] as the adaptive disjoint community detection

method and lastly (6) AFOCS: Our newly proposed forwarding algorithm equipped with

AFOCS as an community detection and update core.

Results of WAIT and MCP algorithms provide us the lower and upper bounds of

important factors: message delivery ratio, time redundancy and message redundancy.

Our experiments are performed on the Reality Mining dataset provided by the MIT

Media Lab [82]. This dataset contains communication, proximity, location, and activity

information from 100 students at MIT over the course of the 2004-2005 academic

year. In particular, we take into account the Bluetooth information to construct the

underlying communication network and evaluate the performance of the above six

routing strategies.

In each experiment, 500 message sending requests are randomly generated and

distributed in different time points. To control the forwarding process, we use hop-limit,

time-to-live, and max-copies parameters. A message cannot be forwarded more than

hop-limit hops in the network or exist in the process longer than time-to-live, otherwise

it will be automatically discarded. Moreover, the maximum number of same messages

107

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

AFOCS

A Average Duplicate Message

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

AFOCS

B Delivery Ratio

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

AFOCS

C Average Delivery Time

Figure 5-2. Experimental results on the Reality Mining data set

108

a device can forward to the others is restricted by max-copies. Experiments results are

repeated and results are averaged for consistency.

5.2.3 Results

Our results are presented in Figures 5-2A, 5-2B, 5-2C. The first observation

reveals that our proposed forwarding algorithm achieves the lowest number of duplicate

messages as depicted in Figure 5-2A, and even far better than the second best method

QCA. On average, only 46.5 duplicate messages are generated by AFOCS during

evaluation process in contrast with 212.2 of QCA, 274.2 of MIEN, 496.4 of LABEL

and the huge 1071.0 overhead messages of MCP. Thus, on the number of duplicate

messages, AFOCS strikingly achieves improvement factors of 4.5x, 5x, 11x and 23x

over these mentioned strategies, respectively. These extremely low overhead strongly

imply the efficiency of AFOCS in communication networks.

Figures 5-2B and 5-2C present our results on the other two important factors,

the message delivery ratios and delivery times. These figures supportively indicate

that AFOCS achieves competitive results on both of these vital factors. In general,

AFOCS is the second best strategy with almost no noticeable different between itself

and the leader method LABEL. On average, AFOCS gets 33% of the total messages

delivered in 3569.2s and only a little bit lags over MCP (34% in 3465.3s) and LABEL

(slightly over 33% in 3462.7s), and is far better than MIEN (32% in 3537.6s) and QCA

(32% in 3572.2s). This can be explained by the advantages of knowing the overlapping

community structure: the disjoint network communities in QCA and MIEN can possibly

have messages forwarded to the wrong communities when the destination changes

its membership. With the ability of quickly updating the network structure, AFOCS can

efficiently cope with this change and thus, can still provide the most updated forwarding

information.

In summary, AFOCS helps our forwarding strategy to reduce up to 11x the number

of duplicate messages while keeping good average delivery ratio and time. These

109

experimental results are highly competitive and supportively confirm the effectiveness of

AFOCS and our new routing algorithm on communication networks.

110

CHAPTER 6
SOLUTIONS FOR WORM CONTAINMENT IN ONLINE SOCIAL NETWORKS

In this section, we present another practical application of our proposed algorithms

in worm containment problem in OSNs. We first suggest a solution based on QCA,

and then describe how AFOCS can help to improve the performance of this solution

for this practical problem in complex networks. Since their introduction, popular social

network sites such as Facebook, Twitter, Bebo, and MySpace have attracted millions of

users worldwide, many of whom have integrated those sites into their everyday lives.

On the bright side, OSNs are ideal places for people to keep in touch with friends and

colleagues, to share their common interests, or just simply to socialize online. However,

on the other side, social networks are also fertile grounds for the rapid propagation of

malicious softwares (such as viruses or worms) and false information.

Facebook, one of the most famous social sites, experienced a wide propagation of

a trojan worm named “Koobface” in late 2008. Koobface made its way not only through

Facebook but also Bebo, MySpace and Friendster social networks [83][84]. Once

a user’s machine is infected, this worm scans through the current user’s profile and

sends out fake messages or wall posts to everyone in the user’s friend list with titles

or comments to appeal to people’s curiosity. If one of the user’s friends, attracted by

the comments without a shadow of doubt, clicks on the link and installs the fake “flash

player”, his computer will be infected and Koobface’s life will then cycle on this newly

infected machine.

Worm containment problem becomes more and more pressing in OSNs as this kind

of networks evolves and changes rapidly over time. The dynamics of social networks

thus gives worms more chances to spread out faster and wider as they can flexibly

switch between existing and new users in order to propagate. Therefore, containing

worm propagation on social networks is extremely challenging in the sense that a good

solution at the previous time step might not be sufficient or effective at the next time

111

A
B

CD

Figure 6-1. A general worm containment strategy.

step. Although one can recompute a new solution at each time the network changes,

doing so would result in heavy computational costs and be time consuming as well as

allowing worms spreading out wider during the recomputing process. A better solution

should quickly and adaptively update the current containing strategy based on changes

in network topology, and thus can avoid the hassle of recomputation.

There are many proposed methods for worm containment on computer networks by

either using a multi-resolution approach [85], or using a simplification of the Threshold

Random Walk scan detector [86], or using fast and efficient worm signature generation

[87]. There are also several methods proposed for cellular and mobile networks [88][89].

However, these approaches fail to take into account the community structure as well as

the dynamics of social networks, and thus might not be appropriate for our problem. A

recent work [16] proposed a social-based patching scheme for worm containment on

cellular networks. However, this method encounters the following limitations on a real

social network (1) its clustered partitions do not necessarily reflect the natural network

communities, (2) it requires the number of clusters k (which is generally unknown for

social networks) must be specified beforehand, and (3) it exposes weaknesses when

dealing with the network’s dynamics.

112

6.1 An Application of QCA in Containing Worms in OSNs

6.1.1 Setup

To overcome these limitations, our approach first utilizes QCA to identify the

network community structure, and adaptively keeps this structure updated as the

network evolves. Once network communities are detected, our patch distribution

procedure will select the most influential users from different communities in order

to send patches. These users, as soon as they receive patches, will apply them to

first disinfect the worm and then redistribute them to all friends in their communities.

These actions will contain worm propagation to only some communities and prevent it

from spreading out to a larger population. To this end, a quick and precise community

detection method will definitely help the network administrator to select a more sufficient

set of critical users to send patches, thus lowering down the number of sent patches as

well as overhead information over the social network.

Algorithm 15 Patch Distribution
Input: G = (V ,E) and its community structure C = {C1,C2, ..,Cp}
Output: The set of influential users P.

1: P = ∅;
2: for Ci ∈ C do
3: while ∃u unvisited in Ci satisfying maxu∈Ci

{eCi

out(u)} > 0 do
4: Let v ← argmaxu∈Ci

{eCi

out(u)};
5: P = P ∪ v ;
6: Mark v as visited in Ci ;
7: end while
8: end for
9: Send patches to users in P;

We next describe our patch distribution. This procedure takes into account the

identified network communities and selects a set of influential users from each

community in order to distribute patches. Influential users of a community are ones

having the most relationships or connections to other communities. In an adversary

point of view, these influential users are potentially vulnerable since they not only

interact actively within their communities but also with people outside, and thus, they

113

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

A α = 2%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

B α = 10%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

C α = 20%

Figure 6-2. Infection rates on static network with k = 150 clusters

can easily fool (or be fooled by) people both inside and outside of their communities.

On the other point of view, these users are also the best candidates for the network

defender to distribute patches since they can easily announce and forward patches to

other members and non-members.

In Alg. 15, we present a quick algorithm for selecting the set of most influential

users in each community. This algorithm starts by picking the user whose number of

social connections to outside communities is the highest, and temporarily disregards

this user from the considering community. This process repeats until no connections

crossing among communities exists. This set of influential users is the candidate for the

network defender for distributing patches.

114

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

A α = 2%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

B α = 10%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

C α = 10%

Figure 6-3. Infection rates on dynamic network with k = 200 clusters

6.1.2 Results

We present the results of our QCA method on the Facebook network dataset

[61] and compare the results with the social based method (Zhu’s method [16]) via a

weighted version of our algorithms.

The worm propagation model in our experiments mimics the behavior of the

famous “Koobface” worm. The probabilities of activating the worm is proportional

to communication frequency between the victim and his friends. The time taken

for worms to spread out from one user to another is inversely proportional to the

communication frequency between this user and his particular friend. Finally, when a

worm has successfully infected a user’s computer, it will start propagating as soon as

115

this computer connects to a specific social network (Facebook in this case). When the

fraction of infected users reaches a threshold α, the detection system raises an alarm

and patches will automatically be sent to most influential users selected by Alg. 15.

Once a user receives the patch, he will first apply it to disinfect the worm and then will

have an option to forward it to all friends in his community. Each experiment is seeded

with 0.02% of users to be initially infected by worms.

We compare infection rates of the social-based method of Zhu’s and ours. The

infection rate is computed as the fraction of the remaining infected users over all infected

ones. The number of clusters k in Zhu’s method is set to be 150 in static and 200 in

dynamic networks, and for each value of k , the alarming threshold α is set to be 2%,

10%, and 20%, respectively. Each experiment is repeated 1000 times for consistency.

Figure 6-2, 6-3 show the results of our experiments for three different values of

k and α. We first observe that the longer we wait (the higher the alarm threshold is),

the higher number of users we need to send patches to in order to achieve the desired

infection rate. For example, with k = 150 clusters and an expected infection rate of 0.3,

we need to send patches to less than 10% number of users when α = 2%, to more than

15% number of users when α = 10% and to nearly 90% of total influential users when

α = 20%.

A second observation reveals that our approach achieves better infection rates than

the social-based method of Zhu’s in a static version of the social network as depicted

in Figure 6-2. In particular, the infection rates obtained in our method are from 5% to

10% better than those of Zhu’s. When the network evolves as new users join in and new

social relationships are introduced, we resize the number of cluster k and recompute the

infection rates of the social based method with the number of cluster k = 200, and the

alarm threshold α = 2% and 10% respectively. As depicted in Figures 6-3, our method,

with the power of quickly and adaptively updating the network community structure,

achieves better infection rates than Zhu’s method while the computational costs and

116

running time is significantly reduced. As discussed, detecting and updating the network

community is the crucial part of a social based patching scheme: a good and up-to-date

network community structure will provide the network defender a tighter set of vulnerable

users, and thus, will help to achieve lower infection rates. Our adaptive algorithm,

instead of recomputing the network structure every time changes are introduced, quickly

and adaptively updates the network communities on-the-fly. Thanks to this frequently

updated community structure, our patch distribution procedure is able to select a better

set of influential users, and thus, helps in reducing the number of infected users.

We further look more into the behavior of Zhu’s method when the number of

clusters k varies. We compute and compare the infection rates on Facebook dataset

for various k ranging from 1K to 2.5K with our approach. We first hope that the more

predefined clusters, the better infection rates clustered partitioning method will achieve.

However, the experimental results reveal the opposite. In particular, with a fixed alarming

threshold α = 10% and 60% patched nodes, the infection rates achived by Zhu’s method

do not decrease but ranging near 28% while ours are far better (20%) with much less

computational time.

Finally, a comparison on running time on the two approaches shows that time taken

for Zhu’s method is much more than our community updating procedure, and hence,

may prevent this method to complete in a timely manner. In particular, our approach

takes only 3 seconds for obtaining the basic community structure and at most 30

seconds to complete all the tasks whereas [16] requires more than 5 minutes to divide

the communication network into modules and selecting the vertex separators. In that

delay, worm propagation may spread out to a larger population, and thus, the solution

may not be effective. These experimental results confirm the robustness and efficiency

of our approach on social networks.

117

6.2 Containing Worms with Overlapping Communities Detected by AFOCS

We show another application of AFOCS in worm containment problem on OSNs.

OSNs are good places for people to socialize online or to stay in touch with friends and

colleagues. However, when some of the users are infected with malicious software, such

as viruses or worms, OSNs are also fertile grounds for their rapid propagations. Since

mobile devices are able to access online social applications nowadays, worms and

viruses now can target computers [17] and mobile devices [16].

Recently, community structure-based methods have been proven to be effective

solutions to prevent worms from spreading out wider on not only social networks [17][18]

but also cellular networks [16]. Due to the high and low frequencies of interactions inside

and between communities, worms spread out quicker within a community than between

communities. Therefore, an appropriate reaction should first contain worms into only

infected communities, and then prevent them from getting outside. This strategy can be

accomplished by patching the most influential members who are well-connected not only

to members of their community but also to people in other communities.

6.2.1 Setup

In our experiments, we use Facebook network dataset collected in [61]. This data

set contains friendship information and wall posts among New Orleans regional network,

spanning from Sep 2006 to Jan 2009. The data set contains more than 63.7K nodes

(users) connected by more than 1.5 million friendship links. We keep other parameters

as well as the “Koobface” worm propagation model the same as [18] for comparison

convenience. With the advantages of knowledge overlapping communities, we are able

to develop a better and more efficient patching scheme. In particular, we enhance the

patching scheme presented in in [18] to take the advantage of the overlap regions:

nodes in the boundary of overlapped regions are selected for patching (Figure 6-4A).

Alg 16 details the adjusted scheme.

118

A Influential users selection

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

AFOCS QCA Blondel Zhu’s

N
u
m

b
e
r

o
f

p
a
tc

h
e
d
 n

o
d
e
s

Method

1752

3552 3569
3347

B Number of patched nodes

Figure 6-4. OverCom patching scheme.

Algorithm 16 OverCom Patching Scheme
Input: G = (V ,E) and C = {C1,C2, ...,Ck} detected by AFOCS
Output: A set of patched nodes IS .

1: IS ← ∅;
2: for (Ci ,Cj ∈ C) do
3: if (Ci ∩ Cj ̸= ∅) then
4: %Choose the neighbors of overlapped nodes as influential ones%
5: IS ← IS ∪ N(u) ∀u ∈ Ci ∩ Cj ;
6: end if
7: end for
8: %Patch distribution procedure%
9: for (u ∈ IS) do

10: Send patches to u;
11: Let u redistribute patches to w ∈ IS\N(u);
12: end for

6.2.2 Results

We compare the OverCom patching scheme and overlapping communities found

by AFOCS to those using disjoint communities proposed by Blondel et al. [5], QCA

by Nguyen et al. [17] and Clustering based method suggested by Zhu et al. [16]. The

number of patched nodes is shown in Figure 6-4B. Both the number of patched nodes

and the infection rates decline remarkably. In particular, the number of nodes to send

patch in AFOCS is substantially smaller by half of those required by Blondel, QCA as

well as Zhu’s methods: only 1725 nodes over 63K nodes in the networks are needed

119

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90 100

In
fe

c
ti
o

n
 r

a
te

Percentage of patched nodes

QCAs
Blondel

Zhu’s
AFOCS

A α = 2%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90 100

In
fe

c
ti
o
n

 r
a

te

Percentage of patched nodes

QCAs
Blondel

Zhu’s
AFOCS

B α = 10%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60 70 80 90 100

In
fe

c
ti
o
n

 r
a

te

Percentage of patched nodes

QCAs
Blondel

Zhu’s
AFOCS

C α = 20%

Figure 6-5. Infection rates between four methods.

120

to be patched by OverCom patching scheme, while the other schemes require nearly

twice (≥3,300 nodes). The reason behind this improvement is due to the nature of our

AFOCS framework, the neighbors of the overlapped nodes should not be to far away

from the center of each community, thus they can easily redistribute the patches once

received.

We next present the achieved infection rates with alarming thresholds (the fraction

of infected nodes over all nodes) α = 2%, 10% and 20%, respectively. This threshold

alarms the distribution process as soon as the infected rate goes beyond α. The results

are reported in Figures 6-5A, 6-5B, 6-5C, respectively. In general, the higher α (i.e., the

longer we wait), the more nodes we have to send patches and the higher infection rate.

OverCom with AFOCS achieves the lowest infection rates in almost all the experiments

and just a little bit lag behind when α = 10%. In particular, when α = 2%, AFOCS helps

OverCom to remarkably reduce from 1.6x up to 4.3x the infection rates of QCA, from

2.6x up to 4x the infection rates of Blondel and 3.2x to 7x those of Zhu’s method. When

α = 10%, AFOCS +OverCom achieves average improved rates of 9% over QCA, 5%

over Blondel and 43% over Zhu’s methods. As α = 20%, the average improvements are

12%, 23% and 53%, respectively. Due to the nature of the event handling processes,

the neighbors of overlapped nodes are not located far away from the rest of their

communities. As a result, they can help to distribute patches to more users in the

communities, hence help to lower the infection rates of AFOCS. These improvement

factors, again, confirm the effectiveness of our proposed method.

121

CHAPTER 7
STABLE COMMUNITY DETECTION IN ONLINE SOCIAL NETWORKS

A large body of work has been devoted to find general communities (i.e., without the

concept of stability) on both directed and undirected networks in the literature [9]. On

the contrary, only a very few approaches are suggested to identify stable communities

[50][51], especially on directed and weighted networks. The main source of difficulty

is due to the inconsistency of community members in a general structure: while they

might appear to be in a community at one time, they may not commit to that particular

community in a long run. One possible approach, therefore, is to find a consensus of

a specific algorithm after multiple runs and use this core as stable communities [50].

However, doing in this way would result in expensive computational cost and time

consuming as well as lack of convergence guarantees. In [51], the authors estimate the

mutual links between pairs of users and suggest a detection method that optimizes the

total mutual connection on the whole network. While the idea of mutual connection is

quite interesting, we find that it might not be sufficient because some estimated mutual

links are of low magnitudes, and thus, may not reflect the correct concept of stability at

the community level.

In general, a stable community is often characterized either by its tight and strong

internal relationships represented by the mutual connections among its users [51],

or by its internal links who possess a high tendency to remain within the community

over a long period of time [49]. In other words, stable communities in the network

are commonly characterized by stable connections among their members. Motivated

by these observations, we suggest SCD (short for Stable Community Detection), a

framework to effectively identify stable communities in directed OSNs that facilitates both

of the above intuitions. In a big picture, SCD works by first enriching the input network

with the stability estimation of all links in the network, and then discovering communities

via stable connections using the lumped Markov chain model. Our approach is

122

mathematically supported by a key connection between the persistence probability of a

community at the stationary distribution and its local topology. One notable advantage of

SCD is that it requires only a single iteration, which shall significantly reduce the running

time. Furthermore, since our method intrinsically accounts for stability, the discovered

communities should be stable as opposed to doing a statistical analysis.

In summary, we suggest an estimation which provides helpful insights into the

stability of links in the input network. Based on that, we propose SCD - a framework

to identify community structure in directional OSNs with the advantage of community

stability. We next explore an essential connection between the persistence probability

of a community at the stationary distribution and its local topology, which is the

fundamental mathematical theory to support the SCD framework. To certify the

efficiency of our approach, we extensively test SCD on both synthesized datasets

with embedded communities and real-world social traces, including NetHEPT and

NetHEPT WC collaboration networks as well as Facebook social networks, in reference

to the consensus of other state-of-the-art detection methods. Highly competitive

empirical results confirm the quality and efficiency of SCD on identifying stable

communities in OSNs.

7.1 Basic Notations

We introduce the basic notations representing the underlying social network that we

will use throughout this paper.

(Graph notation) Let G = (V ,E ,w) be a directed and weighted graph representing

a social network with V is the set of n network users (or nodes), E is the set of m

directed relationships (or edges), and w (or precisely wuv) is the weight function on

each edge (u, v) ∈ E representing the communication frequency between user u and

v in the social network. Without loss of generality, we assume that all edge weights

are normalized, i.e.,
∑

(u,v)∈E wuv = 1 and wuv ≥ 0. For each edge (u, v) ∈ E which

(v , u) /∈ E , we say that the backwards edge (v , u) is missing, we will use the notation

123

(v ; u) and wv ;u to denote the mutual link of edge (u, v) if (v , u) should indeed exist in E

and its weight, respectively. Furthermore, we will use the notation st(u, v , t) to denote

the stability estimate of edge (u, v) at time step (or hop) t. These notations will be

described in detail in next section.

(Community notation) Denote by C = {C1,C2, ...,Cq} the network community

structure, i.e., a collection of q subsets of V satisfying ∪qi=1Ci = V and Ci ∩ Cj = ∅ ∀i , j .

We say that each Ci ∈ C and its induced subgraph form a community of G . For a node

u ∈ V , let N+
u ,N

−
u and Nu denote the set of outgoing, the set of incoming, and the set

of all neighbor nodes adjacent to u, respectively. Furthermore, let k+
u (or w+

u), k
−
u (or w−

u)

and ku(or wu) be the corresponding cardinalities (or total weights) of these sets. For any

C ⊆ V , let C in and C out denote the set of links having both endpoints in C and the set

of links heading out from C , respectively. In addition, let mC = |C in| (rsp. wC = w(C in))

and k+
C =

∑
u∈C k

+
u (rsp. w+

C =
∑

u∈C w
+
u). Finally, the terms node-vertex as well as

edge-link-connection are used interchangeably.

7.2 Link Stability Estimation

We describe our first step towards the identification of stable communities in the

network: the link stability estimation process. Intuitively, a stable community is often

characterized either by its tight and strong internal relationships represented by the

mutual connections among its users [51], or by its internal links who possess a high

tendency to remain within the community over a long period of time [49]. In other words,

stable communities in the network are commonly characterized by stable connections

among their members. Motivated by these observations, in this section, we suggest a

procedure for estimating the stability of each link in the network that facilitates both of

the above intuitions. Our estimation procedure consists of two stages: In the early stage,

the reciprocity of each link in the network is first predicted, and based on that, its stability

is consequently evaluated in the later stage.

124

7.2.1 Link Reciprocity Prediction

When dealing with large scale OSNs, it is possible that some backwards edges

between individuals are missing. This lack of information may due to the imperfect

data collection process, or because these backwards edges are not yet reflected

in the underlying network but should due to the strong relationships between local

network users. For instance, Leskovec et al. [90] observe that friends of friends in social

networks tend to be friend of each other in the near future, i.e., there should be dual

connections between friends of friends with high chance even if they are not yet friend

of each other. Therefore, predicting the existence of these backwards edges will allow

a more complete and comprehensive detection of stable communities by increasing the

internal density of strongly connected components, which are potential candidates for

network communities.

Link reciprocity prediction problem is a well-studied field and many methods

are proposed in the literature [91][92][93]. In this paper, we utilize a method called

“friends-measure” suggested in [93]. The intuition behind this measure is that when

looking at two users in the social network, one can assume that the more connections

their neighbors have with each other, the higher the chance the two users are actually

connected. Originally, this friends-measure between two users u and v is formulated as:

friends-measure(u, v) =
∑
x∈Nu

∑
y∈Nv

δ(x , y)

where δ(x , y) = 1 if either x = y or (x , y) ∈ E or (y , x) ∈ E . This measure has

been extensively verified among other topological features and has been shown to be

a promising one in comparison with other metrics [93]. However, in the case of directed

networks, there are possibilities that different link topologies can share a common

friends-measure value. Therefore, we need to modify the above formula so that it

reflects the true relationship between the network users, and furthermore copes with

edge weights in the network.

125

In order to better handle directed and weighted graphs, we will attempt to predict

the existence of backwards edges of unidirectional links. For example, if (u, v) ∈ E and

(v , u) /∈ E , we will try to find the possibility whether we should enrich the network by

inserting (v , u) into E . To this end, we first relax the direction of the edge between u and

v , and next compute the likelihood that a backwards edge should exist between u and v

by using the modified formula

�(u, v) =

∑
x∈Nv

∑
y∈Nu

τ(x , y)

WvWu

(7–1)

Where τ(x , y) = wvxwxywyu is the total possibility of the backwards path starting

from v , passing through neighbor nodes x and y , and ending at u. When the network

is unweighted Wu = du,Wv = dv and thus, �(u, v) counts the (normalized) number of

paths of lengths two and three joining two users u and v , which intuitively agrees with

the aforementioned friends-measure formula. By Proposition 7.1, we show that �(u, v)

is indeed the generalization of weighted friend-measure(u, v) and depends only on the

nodes’ topology. Hence, �(u, v) can be regarded as the estimated probability that the

backwards connection < v , u > indeed exists, i.e., we set w<vu> = �(u, v).

Proposition 7.1. For any (u, v) ∈ E which (v , u) /∈ E , 0 ≤ �(u, v) ≤ 1.

Proof. We first prove this for unweighted graphs. The proof for weighted graphs

can be extended straightforwardly. It is obvious that 0 ≤ �(u, v). Now we show

�(u, v) ≤ 1. For any x , y such that δ(x , y) = 1, if x = y , they can make just one

connection counted towards the summation. Otherwise, they can make at most du

(or dv) dual-connections at each vertex. Taking these facts into account, we have

�(u, v) =
∑

x∈Nv

∑
y∈Nu

δ(x , y) ≤ dvdu. Thus, the inequalities follows. The left equality

holds when there are no connections from u to v and vice versa. The right equality

holds when every path of length 2 from u to v (or from v to u) are contained in the

corresponding path of length 3.

126

Proposition 7.2. Let n0 be the number of unidirectional links in the input network. The

time complexity for estimating the mutual connections for these links is O(n0M).

Proof. The total time required for estimating the possibility for a backward connection at

an edge (u, v) is du + dv +min
∑

x∈N+
v

∑
y∈N−

y
{d+

x , d
−
y }. Thus, for all n0 links, the total time

complexity is upper bounded by n0(2M) + n0M = O(n0M).

7.2.2 Link Stability Estimation

After the reciprocity of each link in the network has been estimated, the input

network is now enriched with more information of the backwards edges. While the

presence of these dual edges is helpful in characterizing the mutual relationships

between pairs of network users, it might not be sufficient to evaluate the stability of

all network connections as some of the backwards edges may be of low magnitudes,

and thus, may not be able to hint the stability of the connection. Therefore, we need to

further estimate the stability of a network link given its predicted reciprocity. In order to

do so, we define the stability of an edge (u, v) ∈ E at t time steps (or t hops) as follow

st(u, v , t) =
∑
|P|=t

w(P)

where P is a path going from v to u (v and u are excluded) of length |P| = t, and

w(P) =
∏

(a,b)∈P wab is the total weight of path P. Finally, we define the stability st(u, v)

of a link (u, v) ∈ E as the total stability of up to T0 time steps, where T0 is a predefined

parameter (or the upper bound on the number of hops)

st(u, v) =

T0∑
t=1

st(u, v , t). (7–2)

The intuition behind our stability function st(u, v) is as follow: since stable communities

are commonly recognized by a high density of stable edges, it is reasonable to expect

that such edges form a cycles. In the senses of directed and weighted networks, the

stronger the strength of cycles an edge (u, v) is on, the more stable it is believed to be.

127

u v

0.45

u v

x

0.5 0.2

u v

x 0.5 0.2

0.1

y

a) b) c)

Figure 7-1. Illustrations of stability function.

On the contrary, edges that connecting or joining between communities shall hardly

be part of many cycles, and eventually result in low stability. Figure 7-1 illustrates the

stability estimates for link (u, v) at 0, 1 and 2 hops: a) st(u, v , 0) = 0.45 = w<vu>, b)

st(u, v , 1) = 0.5× 0.2 = 0.1, c) st(u, v , 2) = 0.5× 0.1× 0.2 = 0.05.

As a local measure, our suggested stability function has the following advantages

(1) it puts more focus on the existence of the mutual link of any link (u, v) by reserving

the original strength of the backwards edge < v , u >. This intuitively agrees with the

findings that stable clusters are usually made of bidirectional links in [51]. Moreover,

our formula further takes into account the strength of cycles containing the current

link; (2) the more time (or, number of hops) we allow, the more stability a link would

be. Nevertheless, links that really belong to a stable community are more likely to

have strong stability whereas those connecting communities are of low stability. These

advantages support the intuitions of stable communities that we discussed above. The

performance of our stability estimation is evaluated in more detail in section 7.4.

In summary, our link stability estimation first predicts the potential of the dual link

of any link (u, v) ∈ E such that (v , u) /∈ E by using the modified measure in equation

(7–1). Next, it evaluates the stability of the every link in the given network enriched from

the first stage by using equation (7–2), and utilizes these stability values as new weights

for links in the network. This resulting network will be consequently passed as the input

network to our main process: the identification of stable communities.

128

7.3 Stable Community Detection

In this section, we present our main contribution: the stable community identification

process. Given the input network enriched with link stability information, we discover

the stable communities by exploring an important connection between the persistence

probability of each community and its local network topology. In the following paragraphs,

we first review the concept of Lumped Markov chain [94][95], and then establish our key

connection between this Markov chain and the local network topology. Finally, we

describe in detail our last but most important process: stable community detection.

7.3.1 Lumped Markov Chain

A Markov chain [96] is a mathematical system representing transitions from one

system’s state to another, between a finite number of predefined states. In terms of

social networks, a state can be either a user (a node in the graph) or a group of tightly

connected users (a community) in the networks, whereas transitions can be regarded

as the user-to-user or group-to-group communication tendencies. An n-state Markov

chain corresponding to an n-node network is commonly represented by the transition

πt+1 = πtP, where πt = (π1,t ,π2,t , ...,πn,t) with πu,t is the probability of being at node u at

time t, and P = (puv) is the transition matrix. In particular, this n-state Markov chain can

be associated to input network by letting the probability of transiting from a node u to a

neighbor node v as

puv =
wuv∑
j wuj

=
wuv

w+
u

.

Basically, puv is the probability of a random walker jumps from node u to node v given

the network topology. A Markov chain is said to be at its stationary state distribution

π if π satisfies the equation π = πP. As shown in [97], when the network is originally

connected P would be irreducible, and thus, the equation π = πP has a unique solution

which is strictly positive (πu > 0 ∀u ∈ V) which corresponds to the stationary Markov

chain state distribution. When the network is undirected, π can be exactly computed as

π = 1
2W0

(w1,w2, ...,wn) with W0 is the total edge weights. However, we do not have an

129

exact form for the stationary distribution π in general for directed network, and thus, π

has to be computed numerically.

As our ultimate goal is to detect the stable network community structure, we sought

to find a good partitioning of V where each partition will remain wealthy over time. In the

light of Markovian chain method, this corresponds to finding a collection of communities

C = {C1,C2, ...,Cq} where a random walker would spend most of the time walking inside

a community and less time wandering among communities. By defining this partition C

of q communities, we introduce a so called q-state meta-network where each community

in the network becomes a meta-state. However, at this aggregate level, a in general

dynamics Markovian description of a random walker walking among communities is not

possible because the Markovian property may not be well-preserved [94]. Nevertheless,

this q-state community-to-community transition can still be defined using the lumped

Markov chain, which correctly describes the random walker at this scale given the

stochastic process is started at the stationary distribution π [97]. This lumped Markov

chain is defined via the q × q matrix as U in [95]

U = [diag(πH)]−1HTdiag(π)PH

where H is a n × q binary matrix representing the partitioning C.

One of the notable advantages of the lumped Markov chain �t+1 = �tU defined

on U is that it shares the same stationary distribution with the original Markov chain,

i.e., the new stationary distribution defined by � = πH satisfies the equation � = �U.

Moreover, the difference between �t+1 = �tU, starting at �0 = πU, and the original

πtH tends exponentially to zero if the two chains are regular. These advantages make

the community-based lumped Markov chain defined by �tU a very good approximation

of the original n-node network. We stress that the ability of the lumped Markov chain to

describe the random walk dynamics only at stationary is not a limitation for the detection

of stable communities. Indeed, this stationary requirement evaluates the random walk

130

dynamics of all nodes at their stable states, and hence perfectly supports the concept of

stable communities.

In terms of interpretation, each entry ucd of U denotes the chance that a random

walker, at time t, wanders from community c to another community d in time t + 1. As

a result, the diagonal elements uCC ’s (or uC ’s in short) of U indicate the persistence

probabilities that a random walker just walking within a particular community C . Of

course, large values of uC ’s are expected for meaningful communities. It is also shown in

[95] that in directed and weighted graphs, uC can be computed as

uC =

∑
i ,j∈C πipij∑
i∈C πi

(7–3)

Note that
∑

i ,j∈C πipij is the fraction of time a random walker spends on the links inside

a community C . Hence, uC is indeed the ratio between the amount of time a random

walker spends on links and that it spends on nodes in C . In undirected networks, one

can verify that

uC =

∑
i ,j∈C πiwij∑
i∈C wi

=
2wC

2wC + w(C out)
.

7.3.2 The Connection to Network Topology

At this stage, one might try to optimize uC for all communities C ∈ C in order to

maximize theie persistence probabilities. However, doing in this way requires solving

for the stationary distribution πi ’s (as in equation (7–3)) which may be extremely costly,

especially in large scale directed networks. So, how can we effectively optimize the

persistence probability uC for each community without solving for that costly exact

stationary distribution? As an answer for this challenging question, we present in

Proposition 7.3 a connection between the persistence probability of a community C

and its local topology. In particular, we show that the minimum value of uC can be

represented by quantities that only involve C ’s local topology. Therefore, optimizing uC

131

can be shifted as the optimization of these local components, which are inexpensive and

easy to derive.

Proposition 7.3. For any community C ∈ C, at the stationary distribution π, we have the

following inequality

uC =

∑
i ,j∈C πipij∑
i∈C πi

≥ wC

w+
C

.

Proof. It is easy to see that

uC =

∑
i ,j∈C πipij∑
i∈C πi

=

∑
i∈C πi

wi ,C

w+
i∑

i∈C πi
.

where wi ,C =
∑

j∈C wij . Next, we rewrite
∑

i∈C πi in the form
∑

i∈C πi = πTeC where

eC = (ei)N×1 and ei = 1 if i ∈ C and 0 otherwise. Since π is the stationary distribution of

the Markov chain, we have π = πP. Thus

πTeC = πTPeC =
∑
i∈C

πi
(∑
j :(i ,j)∈E

1

w+
i

)
Now we have,

∑
i∈C

πi × wC =
∑
i∈C

πi
(∑
j :(i ,j)∈E

1

w+
i

)
wC

≤
∑
i∈C

πi
wi ,C

w+
i

(∑
t∈C

w+
t

)
=

∑
i ,j∈C

πi
wi ,C

w+
i

× w+
C

Hence, the conclusion follows. The quality holds when all πi equals to each other and

wC = w+
C . This happens when C is a full dually connected clique and is disconnected

from the rest of the network.

7.3.3 Detecting Communities

7.3.3.1 Formulation

Proposition 7.3 discussed in the above paragraph establishes the connection

between the persistence probability of a random walker staying within a community C

and the local network topology. As a result, if we can maximize the later quantity, we can

provide some insurance to the desired optimization with high confidence. Taking into

132

account this intuition, we propose Stable Community Detection (SCD) as an optimization

problem defined as follow: Given a directed, weighted network G = (V ,E ,w), find

a community structure C = {C1,C2, ...,Cq} such that the overall total persistence

probability is maximized:

maxR =
∑
C∈C

wC

w+
C

subject to

Ci ∩ Cj = ∅ ∀i , j ∈ {1, 2, ..., q}
q∪
i=1

Ci = V

Note that in our SCD formulation, the number of communities q will be determined by

optimizing the objective function R and is not an input parameter. Indeed, optimizing

R provides us q a very good estimate for the actual number of communities, as we will

show in section 7.4.

7.3.3.2 Resolution limit analysis

Perhaps one of the most important properties a metric suggested for identifying

community structure should satisfy is the ability of overcoming the resolution limit [58],

i.e., the metric should be able to detect network communities even at different scaling

levels. In this subsection, we analyze the resistance to resolution limit of our proposed

function R by looking particularly at the condition in which two communities should be

merged together. In what following, we simplify the situation by considering undirected

networks.

Let us consider two communities C1 and C2. Let m12 be the number of edges

connecting C1 and C2. In order to merge C1 and C2 into a bigger community, m12 should

satisfy:
mC1

d+
C1

+
mC2

d+
C2

≤ mC1
+mC2

+m12

d+
C1

+ d+
C2

133

The above condition is equivalent to:

mC1

d+
C2

d+
C1

+
mC2

d+
C1

d+
C2
≤ m12

which in turn implies 2
√
mC1

mc2 ≤ m12. Without loss of generality, we can assume that

mC1
≤ mC2

, thus 2mC1
≤ m12. This violates the condition of even a weak community.

Moreover, this inequality implies the sufficient condition to merge two adjacent

communities depends on the local structure of two communities only, regardless of

the rest of the network. This observation indicates that our proposed metric R is strongly

against the resolution limit.

7.3.3.3 Connection to stability estimation

We next verify the following properties of network communities identified by

optimizing our suggested metric R: (1) links within a communities are of high stability

and (2) links connecting communities are of low stability values. These two observations

are shown in Propositon 7.4.

Proposition 7.4. Let C = {C1,C2, ...,Ck} be a community structure detected by optimiz-

ing R, links within each Ci are of strong stability and those connecting communities are

of weak stability values.

Proof. For any node p ∈ V and subset A ⊆ V , let wp,A be the total weight of all links that

p has towards A and vice versa. By this definition, we obtain wp = wp,A + wp,V \A. For any

community C ∈ C, s ∈ C and p /∈ C , since p is not a member of C , we have

wC

w+
C

>
wC + wp,C

w+
C + wp

=
wC + wp,C

w+
C + wp,C + wp,V \C

,

because otherwise joining p to C will give a better value of R. This equality equals

wp,C

wp

<
wC

w+
C

,

which in turn implies that the stability contribution of links joining p to C are insignificant

in comparison to C as a whole.

134

Similarly, for any node s ∈ C , we have

wC

w+
C

>
wC − wp,C

w+
C − wp

=
wC − wp,C

w+
C − wp,C − wp,V \C

,

because otherwise excluding s from C will give a better R. This inequality equals to

ws,C

ws

>
wC

w+
C

,

which in turn implies that the stability contribution of internal links of C are significant in

comparison to C as a whole.

7.3.3.4 A greedy algorithm for SCD problem

Analyzing the theoretical hardness of the SCD problem is an aspect beyond the

scope of this paper. In fact, the NP-hardness of the SCD problem can be shown by a

similar reduction to MODULARITY as in [7] (see also [98] and [99] for a comprehensive

survey on similar graph clustering problems). Given its NP-hardness, a heuristic

approach that can provide a good solution in a timely manner is therefore more

desirable. In this section, we describe a greedy algorithm for the SCD problem

consisting of community growing, strengthening and refinement phases described

as follow.

Growing phase. This phase is responsible for discovering raw communities in the

input network. Initially, all nodes are unassigned and do not belong to any community.

Next, a random node is selected as the first member (or the seed) of a new community

C , and consequently, new members who help to maximize C ’s persistence probability

are gradually admitted into C . When there is no more node that can improve this

objective of the current community, another new community is formed and the whole

process is then cycled in the very same manner on this newly formed community.

Strengthening phase. We further rearrange nodes into more appropriate communities.

Since new members are admitted into a community C in a random order, C ’s objective

value could be further improve with the absence of some of it members as they can be

135

Algorithm 17 SCD Algorithm
Input: A directed weighted graph G = (V ,E ,w)
Output: Community structure C

Growing Phase:
C ← ∅
A← V

while ∃ unassigned node u ∈ A do
C ← {u}
A← A \ {u}
while ∃ v ∈ A such that uC∪{v} > uC do

v ← argmaxv∈A{uC∪{v}}
C ← C ∪ {v}
A← A \ {v}

end while
C ← C ∪ {C}

end while

Strengthening Phase:
for C ∈ C do

while ∃u ∈ C such that uC < uC\{u} do
C ← C \ {u}
C ← C ∪ {u}

end while
end for

Refining Phase:
while ∃C1,C2 such that uC1∪C2

> uC1
+ uC2

do
(C1,C2)← argmaxC1,C2∈C{uC1∪C2

− uC1
− uC2

}
C ← (C \ {C1,C2}) ∪ {C1 ∪ C2}

end while
Return C

obstacles for the total stability. This requires the reevaluation of all C ’s members as a

result. Therefore, in this phase, we exclude any node which reduces the persistence

probability of a community and let them be singleton communities. The removal of

such nodes creates more cohesive communities, i.e., communities with higher internal

stability.

Refining phase. In the last phase, the global stability of the whole network

is reevaluated. In particular, this last refinement phase looks at the merging of

136

two adjacent communities in order to improve the overall objective function. If two

communities have a great number of mutual connections between them, it is thus more

stable to merge them into one community. The final algorithm, which we call SCD

algorithm, is presented in Alg. 17.

7.4 Experimental Results

In this section, we present our results on the discovery of network communities

on both synthesized networks with known groundtruths and real-world social traces

including NetHEPT and NetHEPT WC collaboration and Facebook networks. We

evaluate the following aspects of our proposed SCD framework (1) the effectiveness

of our link stability estimation process, (2) the ability of identifying the general network

community structure without the concept of community stability, i.e., how similar our

detected communities are in comparison with the groundtruths, and (3) the ability of

identifying stable communities in reference to the consensus of other state-of-the-art

methods, including Blondel’s [5], Infomap [100] and OSLOM [101] methods, after their

multiple executions.

7.4.1 Datasets

(Synthesized networks) Of course, the best way to evaluate our approaches is to

validate them on real-world networks with known community structures. Unfortunately,

we often do not know that structures beforehand, or such structures cannot be easily

mined from the network topologies. Although synthesized networks might not reflect

all the statistical properties of real ones, they can provide us the known groundtruths

via planted communities and the ability to vary other network parameters such as

sizes, densities and overlapping levels, etc. Testing community detection methods on

generated data has also becomes a usual practice that is widely accepted in the field

[102].

We use the well-known LFR benchmark [102] to generate 190 weighted and

directed testbeds. Generated data follow power-law degree distribution and contain

137

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
M

I
(N

 =
 1

0
0

0
)

µ

SCD
SCD-NLP

Blondel
Oslom

Infomap
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
M

I
(N

 =
 5

0
0

0
)

µ

SCD
SCD-NLP

Blondel
Oslom

Infomap

A Networks with minC ,maxC unconstrained.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
M

I
(N

 =
 1

0
0

0
)

µ

SCD
SCD-NLP

Blondel
Oslom

Infomap
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
N

M
I

(N
 =

 5
0

0
0

)

µ

SCD
SCD-NLP

Blondel
Oslom

Infomap

B Networks with minC = 25,maxC = 50 (small-size).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
M

I
(N

 =
 1

0
0

0
)

µ

SCD
SCD-NLP

Blondel
Oslom

Infomap
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
M

I
(N

 =
 5

0
0

0
)

µ

SCD
SCD-NLP

Blondel
Oslom

Infomap

C Networks with minC = 50,maxC = 100 (big-size).

Figure 7-2. Results on synthesized networks with different community criteria.

embedded communities of varying sizes that capture characteristics of real-world

networks. Parameters are: the number of nodes N = 1000 and 5000, the mixing

parameter µ = [0.1...1] controlling the overall sharpness of the community structure,

the minimum (minC) and maximum (maxC) of community sizes are set to (25, 50) for

small-size and (50, 100) for big-size communities as in the standard settings. Each test

is averaged over 100 runs for consistency.

138

(NetHEPT and NetHEPT WC) The NetHEPT traces are widely-used datasets for

testing social-aware detection methods [103][104]. These traces contain information,

mostly the academic collaboration from arXiv’s “High Energy Physics - Theory” section

where nodes stand for authors and links represent coauthorships. In their deliverable,

the NetHEPT networks contain 15233 nodes and 31398 links, and weights on edges are

assigned by either uniformly at random (for NetHEPT data) or by weighted cascade (for

NetHEPT WC data) where wuv = 1/din(v) with din(v) is the indegree of a node v .

(Facebook) This dataset contains friendship information among New Orleans

regional network on Facebook, spanning from September 2006 to January 2009 [61].

The data contains more than 63K nodes (users) connected by more than 1.5 million

friendship links with an average node degree of 23.5. In our experiments, the weight

for each link between users u and v is proportional to the communication frequency

between them, normalized on the whole network.

7.4.2 Metric

To measure the quality of the detected communities in comparison with the

embedded groundtruths, we evaluate Generalized Normalized Mutual Information

(NMI) [102]. Basically, the NMI(U,V) value of two structures U and V is 1 if U and V

are identical and is 0 if they are totally separated. This is the most important metric

for a community detection algorithm because it indicates how good the algorithm is in

comparison with the planned communities. Higher NMI values are expected for a better

community detection algorithm.

7.4.3 Effect of Link Stability Estimation

We first evaluate the effect of our link stability estimation on the detection of network

communities by comparing NMI values of SCD and its version with No Link stability

Prediction (SCD-NLP). Due to space limit, results of SCD and SCD-NLP are also

reported in Figure 7-2, where those on general community structure detection are also

presented.

139

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Blondel Infomap Oslom

NetHEPT

NMI
Jaccard

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Blondel Infomap Oslom

NetHEPT-WC

NMI
Jaccard

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Blondel Infomap Oslom

Facebook

NMI
Jaccard

Figure 7-3. Performance of SCD in detecting stable communities on real social traces.

In general, SCD-NLP performs very competitively even without being preprocessed:

on synthesized networks with no community size constraint (Figure 7-2A), its discovered

communities are almost of perfect similarity to the embedded ones (NMI values

approximately 1) on µ = [0...0.5] whereas the quality drops down quickly when µ is

above 0.5. We note that this drop of detection quality is controversial and does not

necessary imply a bad performance since networks with µ > 0.5 is consider very

stochastic, and thus, may not contain a clear community structure. Nevertheless, with

the help of the stability estimation, the performance is now boosted up significantly on

SCD as the detection qualities are very high even for µ > 0.65 (N = 1000) and µ > 0.75

(N = 5000), and only drop down when the networks are extremely stochastic (µ > 0.8).

We next take a look at the cases where networks are constrained with small-sized

(Figure 7-2B) and big-sized communities (Figure 7-2C). We observe that, when

community sizes are constrained, SCD-NLP performs much better than before and

even overcome its prior limit µ = 0.5. In particular, the performance of SCD-NLP closely

approaches that of SCD, especially in large networks (N = 5000). However, SCD-NLP

appears to be sensitive to big-size communities in small networks as its quality drops

down quickly in Figure 7-2C (left), and seems to favor small-size communities as its

plots tend to tangle with those of SCD (Figure 7-2B). SCD detection quality, thanks to

the stability estimation, stays wealthy in all test cases.

140

In summary, these results indicate that (1) without the stability estimation process,

our suggested metric R appears to be a very good one to detect community structure

in general directed and weighted networks, and (2) when the community size is

constrained, link stability estimation has a little effect on the community detection

quality. However, in real-world social network settings where community sizes are

typically unknown, and therefore unconstrained, the stability estimation has a significant

effect on the detection of network communities. These experiments also confirm the

efficacy of our proposed stability estimation procedure.

7.4.4 General Community Structure Detection

We next investigate on SCD’s ability to identify general network community

structure, i.e., without community stability, in comparison with the aforementioned

state-of-the-art detection methods. Results are reported in Figure 7-2.

In general, the performance of our SCD frameworks on synthesized networks

appears to be better than those of Blondel and Infomap methods, and only lags

behind Oslom’s when the networks are heavily stochastic. When the community size

is unconstrained, the detection quality of SCD and other methods, except for Blondel’s,

retain at nearly perfect on µ = [0...0.65] (N = 1000) and µ = [0...0.8] (N = 5000) and

then all degrade quickly. Among the three methods, Infomap’s performance appears to

be sensitive to some certain mixing threshold µ as it NMI values tend to drop directly

to 0, whereas Oslom and ours tend to drop down slower. On average, the NMI values

of SCD are about 8% and 3% better than those of Blondel and Informap methods, and

are about 2% lag behind those of Oslom method. Blondel’s method, on the other hand,

does not attain a good performance through due to low NMI values even at a low range

of mixing value µ. An possible explanation for this behavior of Blondel’s method is due to

the effect of resolution limit, as we shall discuss below.

When the embedded communities are constrained with small and large community

sizes, we observe the nearly same behavior of SCD, Oslom and Infomap methods as

141

depicted in Figures 7-2B and 7-2C. Blondel’s method gets a significant improvement in

these cases where its performance is closely related to the others. As we discussed

above, one possible reason for the bad behavior of Blondel’s method is due to

the resolution limit of modularity objective function [58]. As the community size is

unconstrained, this resolution limit can mislead Blondel method to merge some

communities whose are of small sizes in comparison to the rest of the network, thus

results in the low NMI values. On the other hand, this resolution limit does not take effect

when size constraints are imposed and thus the significant improvement. Our SCD

framework, as shown in section 7.3.3.2, can withstand this scaling limit as its obtains

highly competitively results. Moreover, the difference between our SCD and other

methods are insignificant on average which indicates that all methods are able to detect

network communities with high quality. This is not a surprising result since Blondel,

Oslom and Informap are currently state-of-the-art methods but a great motivation and

award for our SCD framework.

7.4.5 Results on Stable Community Detection

In order to compare our results to the consensus of other detection methods, we

will adopt a strategy recently proposed in [50]. In particular, given a specific community

detection method A, its consensus (or stable) communities can be determined by: (i)

execute A on G np times to have np partitions (ii) find the matrix D = (Dij) where Dij is

the probability which vertices i and j of G are assigned to the same cluster among np

partitions (iii) all Dij ’s that are below a threshold τ will be disregarded (iv) Apply A on

D np times, so to create np partitions and (v) if all partitions are equal, stop (the result

matrix would be block diagonal). Otherwise go to step (ii). As suggested in [50], the

resulted communities are ideal candidates for stable structures as members commit

to their communities. We also compute the Jaccard index J(U,V) = |A∩B|
|A∪B| to better

evaluate the quality of the detected stable communities. Results are represented in

Figure 7-3.

142

As illustrated by the subfigures, even a single run of SCD is able to obtain very high

NMI scores and Jaccard indicies in comparison with the consensus of other methods

after multiple runs. In particular, community structures discovered by SCD on NetHEPT

and NetHEPT WC obtain nearly 70% similarity in comparison with Blondel, Infomap and

Oslom methods, meanwhile the Jaccard indicies indicate that, in average, almost 66%

number of nodes are found in common between SCD and the core structure of other

competitors. This show that communities discovered by SCD are indeed highly overlap

with core community structures identified by other detection methods, which in turns

implies that those clusters found by SCD are stable with high confidence. Surprising, in

both NetHEPT and NetHEPT WC networks, we observe the high similarity among the

consensus of Blondel, Infomap and Oslom methods even with difference in edge weight

distribution. This observation indicate those identified communities by SCD are, in fact,

stable in these networks.

Even in Facebook, a large network with real social interactions, the similarity

between consensus communities discovered by other methods and by SCD are still of

high similarity with nearly 60%, 50% similarity to those found by Blondel and Infomap

methods with over 50% overlap in the stable partitions as indicated by the Jaccard

indices. The achieved NMI values in comparison with Oslom method are relatively low

as their core communities do not appear to highly overlap (Jaccard index of only 35%).

We note that this low similarity does not indicate the unstability community structure of

our SCD framework since communities detected by Oslom can be overlapped with each

other, while SCD works towards disjoint community structure. Nevertheless, as just a

single run, the above competitively results in reference to other state-of-the-art methods

confirm the efficay and quality of our method in detecting stable network communities in

OSNs.

143

7.5 Conclusion

In this work, we investigate community structures in directed OSNs with more focus

on community stability. As an effort towards the understanding of stable communities,

we suggest an estimation procedure which provides helpful insights into the stability

of links in the input network. Based on that, we propose SCD, a framework to identify

community structure in directed OSNs with the advantage of community stability. We

explore an essential connection between the persistence probability of a community

at the stationary distribution and its local topology, which is the fundamental point

to back our SCD framework. Finally, we certify the efficiency of our approach on

both synthesized datasets with embedded communities and real-world social traces,

including NetHEPT collaboration and Facebook social networks, in reference to the

consensus of other state-of-the-art detection methods. Highly competitive empirical

results confirm the quality and efficiency of SCD on identifying stable communities in

OSNs.

144

CHAPTER 8
ASSESSING NETWORK COMMUNITY STRUCTURE VULNERABILITY

8.1 Introduction

As a first study on assessing the vulneraibility of the network community structure,

in this paper, we take the first step on understanding how the failures of crucial nodes

in the network will affect its community structure. Particularly, we are interested in

identifying network nodes whose removals trigger a significant restruction of the current

community structure. Formally, given the input network and a positive number k , we

introduce the Community Structure Vulnerability (CSV) which aims to find out a set

S of k nodes whose removal maximally transforms the current network community

structure to a totally different one, i.e., the new community structure resulted from the

removal of S is of least similarity to the original one, evaluated via the Normalized

Mutual Information [105] measure.

Knowledge about this crucial vulnerability of network community structure is of

considerable usage, especially for social-aware methods in mobile ad-hoc and online

social networks (OSNs). To give a sense of its effects, consider message forwarding

in DTNs. Since social-based forwarding strategies in DTNs rely on the highest ranked

nodes in each community to forward the message [106][76], the knowledge of this

vulnerability can help to either design routing algorithms that do not overload those

crucial devices, if they are those highly ranked ones in a community, or to design

an effective backup plan when some of them may fail at the same time. In worm

containment application in OSNs [18][16], this knowledge can provide helpful insights

into the protection of those sensitive nodes, if they are indeed high influential users,

once worms spread out in the network. As a result, the identification of nodes whose

removal triggers a massive restruction of the community structure is extremely important

for the network’s regular operation. However, under a minor structural change when a

node is excluded from a community, this particular community can either stay intact if the

145

removed node is less important, or can be broken down into smaller subcommunities

which can further be merged to other communities if the current node is of great

important to the community. This unpredictable transformation of network communities

together with their large scales in reality make the assessment of community structure

vulnerability a fundamental yet challenging problem.

8.2 Problem Definition

In this section, we first define the graph notations that will be used thoroughly in

this paper. We then describe Normalized Mutual Information (NMI) [105], a concept

in Information Theory, as a metric to assess the difference between community

structures before and after the removal of important nodes. Finally, we formally define

the Community Structure Vulnerability problem - our main focus in this paper.

(Notations) Let G = (V ,E) be an undirected unweighted graph representing a

network where V is the set of |V | = N nodes (e.g., users), and E is the set of |E | = M

links. For any node u ∈ V and a set C ⊆ V , let N(u), du and dCu be the set of all

neighbors of u, its degree in G and its degree in C , respectively. Furthermore, let

nC = |C | be the number of nodes and mC be the number of internal edges in C .

(Community structure) Denote by A the specific community detection algorithm that

will be applied on G , and by X = {X1,X2, ...,XcX},Y = {Y1,Y2, ...,YcY } the two (possibly

overlapped) community structures of cX and cY communities detected by A before and

after the removal of a set S of k nodes in G , respectively. Mathematically, X and Y are

represented as X = A(G) and Y = A(G [V \S]), where G [V \S] is the subgraph induced

by V \S on G . For any index i = 1, ..., cX and j = 1, ..., cY , let xi = |Xi |, yj = |Yj |, and

nij = |Xi ∩ Yj |. Finally, let �x =
∑cX

i=1 xi , �y =
∑cY

j=1 yj and �n =
∑cX

i=1

∑cY
j=1 nij be the total size

of communities in X and Y , and the total number of common nodes shared between X

and Y , respectively.

(Normalized Mutual Information) In order to evaluate how much the network

community structure changes before and after the removal of important nodes, we

146

utilize the concept of Normalized Mutual Information suggested in [105]. Basically, given

two structures X and Y , NMI (X ,Y) is 1 if X and Y are identical and is 0 if X and Y

are totally separated, and the higher the NMI score, the more similarity between X

and Y . As a result, NMI is a well-suited metric dedicated for certifying the quality of

community structures discovered by different detection algorithms. The effectiveness of

this widely-accepted measure has also been extensively verified in the literature [102].

Formally, NMI (X ,Y) is defined as

NMI (X ,Y) =
2I (X ,Y)

H(X) + H(Y)
,

where H(X), H(Y) and I (X ,Y) are the entropy of structures X and Y , and the Mutual

Information conveyed between them, respectively. More details about NMI formulation

will be elaborated in our analysis.

(Problem definition) Finally, the Community Structure Vulnerability (CSV) problem is

formulated as follow.

Definition 1. Given a network represented by an undirected and unweighted graph G ,

a specific community detection algorithm A, and a positive integer k ≤ N, we seek for a

subset S ⊆ V such that

S = argmin
T⊆V ,|T |=k

{NMI (A(G),A(G [V \T]))}.

In other words, CSV problem seeks for a subset S ⊆ V of k nodes whose removal

results in the maximum difference between the initial community structure X and the

new community structure Y detected by A on G [V \S]. We call S the Node-Vulnerability

set of G since its removal maximally transforms network communities of G to different

structures.

Remark. The formulation of CSV requires the community detection algorithm A

as an input parameter. Because there is not yet an universal agreement or accepted

definition of a network community, this input is necessary in the sense that different

147

algorithms with different objective functions might favor different sets of nodes, and

thus, a good solution set for one community detection algorithm may not be good for

the others. However, when there is a clear objective function for finding community

structure, such as maximizing Modularity Q [102] or the total internal density [76], this

requirement can be lifted. Nevertheless, the node selection strategy that relies more on

the input network and less on the community detection algorithm is always of desire.

8.3 Analysis of NMI Measure

In this section, we investigate the possible conditions on sizes and the number

of communities that can potentially lead to either the global or local minimization of

NMI (X ,Y). We stress that these conditions are by no means universal or exhaustive

since some of them might not hold true simultaneously, given the input parameters.

Indeed, what we hope for is these conditions would provide us key insights into the

selection of important nodes to maximally separate X and Y . In the coming paragraphs,

we first discuss the NMI formulation in a greater detail, and then analyze it in terms of

both disjoint and overlapping community structures.

8.3.1 NMI Formulation

To evaluate NMI (X ,Y) [105] where X = {X1,X2, ...,XcX} and Y = {Y1,Y2, ...,YcY },

we start out by considering community assignments Xi and Yj , where Xi and Yj indicate

the community labels of a node t in X and Y , respectively. Without loss of generality, we

can aslo assume that the labels Xi and Yj are also values of two random “variables” X

and Y (here we reuse notations X and Y to denote the two random variables), with joint

distribution

P(Xi ,Yj) = P(X = Xi ;Y = Yi) = nij/(N − k),

and individual distribution

P(Xi) = P(X = Xi) = xi/N,

P(Yj) = P(Y = Yj) = yj/(N − k).

148

The entropy (or uncertainty) of X and Y is defined as [107]

H(X) = −
cX∑
i=1

P(Xi) logP(Xi) = −
cX∑
i=1

xi

N
log

xi

N
,

H(Y) = −
cY∑
j=1

P(Yj) logP(Yj) = −
cY∑
j=1

yj

N − k
log

yj

N − k

=
1

N − k

(
�y log(N − k)−

cY∑
j=1

yj log yj
)
.

Note that in CSV problem, X can be derived straightforwardly based on A and G , and

thus, quantities xi ’s can also be inferred from these input parameters. Therefore, we

simply consider xi ’s and H(X) as constants in this paper.

The Mutual Information I (X ,Y) [107] of two random variables X and Y is defined

as

I (X ,Y) =

cX∑
i=1

cY∑
j=1

P(Xi ,Yj) log
P(Xi ,Yj)

P(Xi)P(Yj)

=

cX∑
i=1

cY∑
j=1

nij

(N − k)
log

Nnij

xiyj
.

This measure is symmetric and it tells us how much we know about variable (or

structure) Y if we already know about variable X , and vice versa. However, as indicated

in [105][102], Mutual Information itself is not ideal as a global similarity metric since

any subpartition of a given community structure X would result in the same mutual

information with X , even though they can possibly be very different from each other. As

a result, [105] introduces the Normalized Mutual Information which can overcome that

limitation. Formally, NMI of two random variables X and Y is defined as

NMI (X ,Y) =
2I (X ,Y)

H(X) + H(Y)
(8–1)

149

In term of notations, NMI (X ,Y) can be written as

2
∑cX

i=1

∑cY
j=1 nij log

Nnij
xiyj

(N − k)H(X) + �y log(N − k)−
∑cY

j=1 yj log yj
(8–2)

8.3.2 Minimizing NMI in a Disjoint Community Structure

When network communities are disjoint from each other, we have Xi ∩ Xs = ∅,

∪cXi=1Xi = V , Yj ∩ Yt = ∅, and ∪cYj=1Yj = V \S for all i , s = 1, ..., cX and all j , t = 1, ..., cY .

As a result, the following equalities hold true: �x =
∑cX

i=1 xi = N, �y =
∑cY

j=1 yj = N − k and

�n =
∑

ij nij = N − k (∗).

8.3.2.1 Minimizing NMI within a community

We first investigate the behavior of NMI (X ,Y) in a special case where only one

specific community of X is affected by the removal of set S of k nodes while other

communities stay intact. We can assume that X1 is the targeted community which is

further divided into p smaller subcommunities of sizes s1, s2, ..., sp satisfying
∑p

j=1 sj =

x1 − k . In this case

H(Y) =

p∑
j=1

sj

N − k
log

N − k

sj
+

cx∑
i=2

xi

N − k
log

N − k

xi

=
(x1 − k) log(N − k) +

∑cX
i=2 xi log

N−k
xi
−
∑p

j=1 sj log sj

N − k
,

and

I (X ,Y) =

p∑
j=1

sj

N − k
log

N

x1
+

cx∑
i=2

xi

N − k
log

N

xi

=
x1 − k

N − k
log

N

x1
+

cX∑
i=2

xi

N − k
log

N

xi
.

Thus, NMI (X ,Y) is minimized when
∑p

j=1 sj log sj is minimized. Since function s log s is

strictly convex for any s > 0, we apply Jensen’s inequality [107] to this summation and

get
1

p

p∑
j=1

sj log sj ≥
∑p

j=1 sj

p
log

∑p

j=1 sj

p
=

x1

p
log

x1

p
,

150

with the equality holds when all sj ’s are equal to each other. It reveals from this

inequality that, in order to further minimize the RHS quantity, one can try to break X1

into as many smaller communities of the relatively same size as possible (i.e., to enlarge

p as much as possible while ensuring si ’s are all equal). This intuition makes senses

since a new structure of X1 with all singleton communities will incur
∑p

j=1 sj log sj = 0,

and hence, will maximize H(Y) and in turn will minimize NMI (X ,Y). However, since the

new structure of X1 depends on the community detection algorithm A, the all-singleton

communities scenario might not always be the case. Furthermore, will this crucial

observation hold true in a general disjoint and overlapping community structure? We

tend to lean over the affirmative answer through our analysis in the coming subsections.

8.3.2.2 Minimizing NMI in a general disjoint community structure

In general disjoint community structure, the equalities (∗) help to simplify NMI (X ,Y)

(eq. 8–2) to
2
∑cX

i=1

∑cY
j=1 nij log

Nnij
xiyj

(N − k)H(X) + (N − k) log(N − k)−
∑cY

j=1 yj log yj
.

In order to minimize the above ratio, one would seek for the conditions in which the

numerator of NMI (X ,Y) is minimized while its denominator is also maximized. To

maximize the latter quantity, we need to minimize
∑cY

j=1 yj log yj . Applying Jensen’s

inequality to this summand gives

1

cY

cY∑
j=1

yj log yj ≥
�y

cY
log

�y

cY
=

N − k

cY
log

N − k

cY
,

and thus
∑cY

j=1 yj log yj can attain it minimum at (N − k) log N−k
cY

with equality holds

when all yj ’s are equal to each other. As N and k are input parameters, log N−k
cY

can

further be minimized when cY is as large as possible, while requiring yj ’s to be equal

to each other. Mathematically, this can be achieved when Y contains exactly cY ≡

(N − k) singleton communities. However, since our problem depends on the detection

algorithm, this inequality advises that the newly community structure Y should contain

as many communities of relatively the same size as possible. We take into account

151

this observation as it will play a key role in our important-node selection process. This

observation is also coincident with what inferred in the prior special case, and intuitively

agrees with the concept of Critical Node Detection (CND) [21] and Balanced Graph

Partitioning (BGP) [108] whose goals aim to delete nodes and cut the input graph into p

connected components of relatively the same size. However, CSV fundamentally differs

from these problems in the senses that connected components in BGP and CND do not

necessarily reflex network communities.

In order to minimize the numerator, we rewrite it as

I (X ,Y) =
1

N − k
(
∑
ij

nij log
Nnij

yj
−
∑
ij

nij log xi).

Applying Log Sum Theorem [107] to the first summand gives

I (X ,Y) ≥ 1

N − k

(
�n log

N�n

cX�y
−

∑
ij

nij log xi

)
= log

N

cX
− 1

N − k

∑
i

(xi − li) log xi ,

because �n = �y = N − k and
∑cY

j=1 nij = xi − li , ∀i = 1, ..., cX , where li is the number

of deleted (or lost) nodes in community Xi , and li ’s satisfy
∑cX

i=1 li = k . The equality

holds when nij/yj is a constant, say γ ≥ 0, for all i = 1, ..., cX , j = 1, ..., cY . If we

assume that this is the case, then
∑cY

j=1 nij = γ
∑cY

j=1 yj = γ(N − k), which in turn implies

N − k =
∑

ij nij = cXγ(N − k). Hence, γ = 1/cX and thus, li = xi − (N − k)/cX . Therefore,

to minimize the second summand, the equation li = xi − (N − k)/cX advises that we

should put more focus on (i.e., remove more nodes in) big-sized communities Xi of X

to break it into smaller modules. This breaking down of big-sized communities partially

supports the prior observation that communities of Y should have relatively the same

size. Note that in this analysis, we have assumed that nij/yj is a constant for all pair of

i and j . In practice, this might not always be the case since real communities can be

distributed differently based on the underlying detection algorithm. Nevertheless, we find

152

this observation helpful as it suggests a general instruction for selecting important nodes

in the network.

8.3.3 Minimizing NMI in an Overlapped Community Structure

The minimization of NMI (X ,Y) measure is much more complicated when network

communities can overlap with each other. In particular, the conditions ∪cXi=1Xi = V and

∪cYj=1Yj = V \S still hold in this case; however, Xi ∩ Xs and Yj ∩ Yt might not be empty

for some i , s = 1, ..., cX and j , t = 1, ..., cY . These facts indicate that �x =
∑cX

i=1 xi ≥ N,

�y =
∑cY

j=1 yj ≥ N − k and �n =
∑

ij nij ≥ N − k .

Our analysis strategy in this case is similar to the prior one as we also strive for

maximizing the denominator while minimizing the numerator of NMI (X ,Y) (eq. 8–2).

Because �n ≥ N − k , the minimization of the top term I (X ,Y) no longer depends only on

xi ’s anymore. One way to work around this issue is to investigate the relative correlation

between the total community size �y and the number of communities cY . Let αA = �y
cY

be

the ratio between these two quantities, or in other words, the averaged community size.

The denominator of NMI (X ,Y) is evaluated as

�y log(N − k)−
cY∑
j=1

yj log yj ≤ �y

(
log(N − k)− log(�y/cY)

cY

)
= �y log (N − k)− αA logαA.

with equality holds when all yj ’s are equal to each other. To further maximize this

denominator, we need �y to be as large as possible while keeping αA as small as

possible, i.e., the new community structure Y should contain more and more communities

as to increase cY as well as to lower down αA.

Due to the dependence on the specific detection algorithm A, this optimization on

the correlation between �y and cY might not be globally achieved. However, a coarse

analysis between �y and cY can relatively be conducted in the following senses: if we

assume that �y is within a constant factor of the total number of actual nodes (N − k),

i.e., �y ≤ a0(N − k) for some constant a0 > 1, we can then increase the value of the

153

RHS by breaking as many communities as possible while keeping them having the size

(i.e., enlarge cY and keep yj ’s are all the same), which helps to reduce the impact of

αA logαA. This observation, though relative, agrees with what we achieved in the case

of disjoint community structure. In an unfortunate case where �y is not known to be within

any constant factor of (N − k), the observation might not hold since both �y and cY can

be arbitrary large and thus, αA logαA could still be relatively small.

Next, applying Log Sum Theorem on the numerator yields

I (X ,Y) =
∑
ij

nij log
Nnij

xiyj
≥ �n log

N�n

�x�y
,

with equality holds when Nnij
xiyj

is a constant for all i = 1, ..., cX and j = 1, ..., cY . Thus,

one can try to minimize I (X ,Y) by deleting nodes in such a way that �n is maximized and

�y is minimized while making sure that Nnij
xiyj

is a constant. As a result, this minimization

of I (X ,Y) is a multiple-objective optimizations problem which may not have a feasible

solution. However, if we assume that the later condition is imposed, i.e., Nnij
xiyj

= βA for

some constant βA > 0, then nij =
βAxiyj
N

, and thus �n = βA
N
�x�y . This reduces the above

inequality to

I (X ,Y) ≥ �x

N
βA�y log βAN.

The RHS of the inequality advises that, in order to minimized I (X ,Y), the total size

of network communities should not be too large while the overlapping ratio of every

community should be equal to each other and be as small as possible. This is a different

criterion from the disjoint community structure point of view.

8.4 A Solution to CSV Problem

In the following paragraphs, we consider the scenario when maximizing the

internal density [76] is the objective function for finding network communities, i.e.,

communities of G are assumed to have optimized internal densities. In this manner,

we present genEdeg, an algorithm for solving CSV problem that is independent of the

underlying community detection algorithm A. Our solution strategy will try to break

154

larger communities to as many small ones as possible while looking for them to have

the relatively same size with small overlapping ratios. The idea of our strategy is based

on the following intuition: since communities in X are optimized for their internal density,

they are likely to contain strong substructures that are tightly connected which form the

cores of these communities. As a result, the removal of crucial nodes in a core might

potentially break the community into smaller modules. Moreover, as nodes in a core are

tightly connected, there should be some edge that generate them, i.e., all nodes in the

core are incident to both endpoints of this edge. Inspired by this intuition, our strategy

works towards the identification of these generating edges of a community, and then

seek for the minimum set of generating edges that composes the original communities.

Let D be a subset of V . Denote by 	(D) = 2mD

nD(nD−1)
the internal density of D and by

τ(D) = nD(nD−1)
2

− 2
nD (nD−1) the threshold function on the internal density of D, respectively.

For any nodes u, v ∈ D, if edge (u, v) is not in E , we call it a missing edge in D. In

addition, we call an edge in D “negative” if it is incident to a missing edge in D, and

“positive” otherwise. We define the concept of generating edges of D as follow

Definition 2. (Generating edge) For any edge (u, v) in D, if D = (D ∩ N(u) ∩ N(v)) ∪

{u, v} and 	(D) ≥ τ(D), we call (u, v) a generating edge of D. We further call D a local

core generated by (u, v) and write gen(u, v) = D.

For any community C of G , a set L ⊆ E is called a “generating edge set” of a C

if ∪(u,v)∈Lgen(u, v) = C . Since C can be generated by different generating edge sets

and we are constrained on the node budget, we would intuitively seek for the generating

edge set of minimal cardinality.

Definition 3. (Minimum Generating Edge Set) Given a community C of G , the MGES

problem seeks for a generating edge set L∗ of C with the smallest cardinality.

The cores generated by edges in a MGES of a community C of G are tightly

connected and they all together compose C . As a result, if we delete an endpoint

of every edge in a MGES, C will be broken into smaller modules with the number of

155

modules is at least the number of edges in a MGES (Lemma 16). Since our goal is to

break the current community structure X into as many new communities as possible,

the removal of crucial nodes defined by edges in a MGES will be a good heuristic

for this purpose. But first and foremost, we need to characterize all MGESs in the

current community structure X based only on the input network G . Lemma 17 realizes

the location of the generating edge(s) of a local core in a community C : they have to

adjacent to nodes with the highest degree in C . Based on this result, we present in Alg.

18 a procedure that can correctly find the MGES of a given community C (Theorem 8.1).

Algorithm 18 An optimal algorithm for finding the MGES
Input: Network G = (V ,E) and a community C ∈ X ;
Output: Minimum generating edge set L∗ of C ;

0. Mark all nodes as “unassigned” and L∗ = ∅.
1. Remove all negative edges in C . If any edge(s) survive, they are candidate for
generating edges in their corresponding communities, including them to L∗, go to step
2. Else, go to step 3.
2. Reconstruct local cores based on generating edges found in step 1. Mark all nodes
in those communities as “assigned”. Discard generating edges in L∗ that fall into any
newly constructed communities. Return if all edges are assigned.
3. Find the set U as in Lemma 17. Find the edge in NE(U) that can generate a local
community having the largest size. Include this edge to L∗ and mark all nodes in the
new local community as “assigned”. Ties are broken randomly. Return if all edges are
assigned.
4. If there are still unassigned nodes, say the set I ⊆ C , construct G1 = G [(I ∪ N(I)) ∩
C]. Go to back to step 1.

Lemma 16. Let L∗ be a MSGE of a community C . The removal of an endpoint in every

edge of L∗ will break C into at least |L∗| subcommunities.

Proof. Clearly, the removal of an endpoint of every edge in L∗ will degrade the internal

density of each core since the endpoint of the generating edge is of full degree in its

core. Now, if the number of subcommunities resulted in the node removal is less than

|L∗|, it means there are at least two cores that are merged together. That is there are

cores c1 and c2 are merged together even with less internal density. This should not be

156

the case since otherwise, they have to be identified as a single core at the first place.

Their combination, as a result, implies that C has a MGES of size less than |L∗|, which

raises a contradiction to the assumption that L∗ is a MGES of C .

Lemma 17. Let C be a subset of V , U = {u ∈ C |dCu is the highest in C} and NE(U) =

{(u, v)|u ∈ U or v ∈ U but not both }. Then, |NE(U) ∩ L∗| ≥ 1.

Proof. After each refreshment in step 2, let u be the node with the highest indegree in

C . After step 1 of Alg. 18, all negative edges are deleted since they do not contribute to

the actual generating set L∗. As such, edges incident to u are not negative. This in turn

implies that they are candidates for generating edges. Now, iterate through all edges

incident to u and choose the one that generates the biggest-sized core. This edge

should be in the list L∗.

Theorem 8.1. Let dC be the maximum in-degree of a node in C . Alg. 18 takes O(dC |C |)

time in the worst case scenarios and returns an optimal solution for MGES problem.

Proof. Since every time Lemma 17 makes sure that at least one edge should be added

to L∗ and the procedure terminates when no edges left, the Alg. 18 should terminate.

Moreover, it is verifiable that Alg. 18 take at time as most the number of edges in C ,

which is O(dC |C |). Also, due to the intense internal density of a core, every time an

edge is added into L∗, that edge actually generates the largest core possible. The proof

follows from this fact, Lemma 17 and the exhaustive property of Alg. 18.

Algorithm 19 genEdge - A node selection strategy for CSV based on generating edges
Input: Network G = (V ,E), X = A(G);
Output: A set S ⊆ V of k nodes;

1. Use Alg. 18 to find L∗
Xi

for all communities Xi ’s in X .
2. Sort all communities Xi ’s in X by their sizes of MGSEs.
3. Sort all nodes in G by the number of generating edges that they are incident to in
Xi . If there is a tie, sort them by their degrees in G .
4. Return top k nodes in step 3.

157

With the optimal solution of MGES taken into account, we next suggest a heuristic

for selecting important nodes following the guidelines suggested in the previous. In

particular, our heuristic selects nodes in a greedy manner, starting from communities

that have large-size MGESs. Moreover, in the MGES of each community C , we give

priority to nodes that are incident to more generating edges since their removals will

break C into more subcommunities.

8.5 Experimental Results

In this section, we show the empirical results of our node selection strategy for CSV

on both synthesized networks with known community structures and real-world social

traces including the Reality mining cellular dataset [82], Facebook [61] and Foursquare

[109] social networks. In order to certify the performance of our approach, we compare

the results obtained by the following methods: High degree centrality (highDeg) selects

top k nodes in G with the highest degrees, betweeness centrality (betweeness) selects

top k nodes in G with the highest betweenesses (where the betweeness of a node u is the

number of shortest paths in G that pass through u), Generating edges (genEdge) - our

strategy described in Alg. 19, and finally, Node Importance (nodeImp) [54] selects top k

nodes by their importance to the community structure.

We first examine the effect of the underlying community detection methods by

comparing results obtained by AFOCS [76], Blondel [5] and Oslom [101] algorithms to

the embedded groundtruths. In particular, we set X to be the groundtruth community

structure and when S is removed from the network NMI (X ,Y) is reported, where

Y = AFOCS(G [V \S]), Y = Blondel(G [V \S]) and Y = Oslom(G [V \S]), respectively.

These methods have been empirically certified in the literature to the best algorithms

for finding non-overlapping and overlapping community structure [102]. Verifying our

strategy on synthesized networks not only certifies its performance but also provides us

the confidence to its behaviors when applied to real-word traces. We next demonstrate

the following quantities (1) the NMI differences between community structures before

158

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

N
M
I

(
A
F
O
C
S
)

k

higDeg
betweeness

genEdge
nodeImp

A NMI scores by AFOCS

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

N
M
I

(
B
l
o
n
d
e
l
)

k

higDeg
betweeness

genEdge
nodeImp

B NMI scores by Blondel

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

N
M
I

(
O
s
l
o
m
)

k

higDeg
betweeness

genEdge
nodeImp

C NMI scores by Oslom

Figure 8-1. Comparison among different node selection strategies on synthesized
networks with N = 2500 nodes

159

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

N
M
I

(
A
F
O
C
S
)

k

higDeg
betweeness

genEdge
nodeImp

A NMI scores on AFOCS

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

N
M
I

(
B
l
o
n
d
e
l
)

k

higDeg
betweeness

genEdge
nodeImp

B NMI scores on Blondel

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

N
M
I

(
O
s
l
o
m
)

k

higDeg
betweeness

genEdge
nodeImp

C NMI scores on Oslom

Figure 8-2. Comparison among different node selection strategies on synthesized
networks with N = 5000 nodes

160

and after the node removal, which is our main objective function, (2) the number of

communities in the new structure, and (3) the average size of the network communities

in the new structure.

8.5.1 Results on Synthesized Networks

Set up: We use the well-known LFR overlapping benchmark [102] to generate

test networks. The number of nodes are N = 2500 and 5000, the mixing parameter

µ = 0.15, the community sizes cmin = 10 and cmax = 50 for N = 2500 and cmin = 30

and cmax = 100 for N = 5000. At every k nodes are removed from the network, the

network community structure is reidentified and compared to the original embedded one

(or the ground-truth). The overlapping threshold β in AFOCS is set at 0.7 and all tests

are averaged on 100 runs for consistency.

8.5.1.1 Solution quality

We first evaluate the performance of all aforementioned node selections strategies

on different community detection algorithms AFCOS , Blondel and Oslom, respectively.

Because the ground-truth communities on synthesized networks are given a priori,

comparisons through NMI scores among these strategies as well as among detection

algorithms are therefore valid, and the lower NMI scores a strategy obtains, the more

effective it seems to be. In addition, the higher the remaining NMI measure a detection

algorithm obtains after the node removal, the more resistant to node vulnerability it

seems to be.

The quality of node selection solutions, are reported in figures 8-1 and 8-2. In a

general trend, NMI scores tend to drop down quickly as more nodes are removed from

the network when N = 2500; however, they degrade much slower in networks with

N = 5000. The first observation revealed in those figures is that our approach genEdge

achieves the best (lowest) NMI scores on almost all test cases. In average, on networks

with 2500 nodes, genEdge is 14% better than both highDeg and betweeness, and is 12%

better than nodeImp on AFOCS algorithm; and is 19%, 11% and 5% better than highDeg,

161

 140

 145

 150

 155

 160

 165

 170

 5 10 15 20 25 30 35 40 45 50

#
 o

f
c
o
m

m
u
n
it
ie

s

k

higDeg
betweeness

genEdge
nodeImp

A N = 2500

 10

 11

 12

 13

 14

 15

 5 10 15 20 25 30 35 40 45 50

A
v
g
.
c
o
m

m
u
n
it
y
 s

iz
e

k

higDeg
betweeness

genEdge
nodeImp

B N = 2500

 220

 225

 230

 235

 240

 245

 250

 5 10 15 20 25 30 35 40 45 50

#
 o

f
c
o
m

m
u
n
it
ie

s

k

higDeg
betweeness

genEdge
nodeImp

C N = 5000

 18

 19

 20

 21

 22

 23

 5 10 15 20 25 30 35 40 45 50

A
v
g
.
c
o
m

m
u
n
it
y
 s

iz
e

k

higDeg
betweeness

genEdge
nodeImp

D N = 5000

Figure 8-3. Results obtained by AFOCS on networks with N = 2500 nodes and
N = 2500 nodes.

betweeness, and nodeImp on Blondel algorithm (figure 8-1A, 8-1B). On Oslom algorithm,

genEdge differs insignificant with highDeg and betweeness with 1.5% and 1.4% better,

and is only lagged behind nodeImp with 3% lower NMI scores. On network with 5000

nodes, genEdge still outperforms other strategies with 12% lower NMI scores than the

others on AFOCS algorithm, and with 23%, 8% and 6% lower NMI scores than highDeg,

betweeness and nodeImp on Blondel algorithm, and finally, with 7%, 10% and 8% better

than the others on Oslom algorithm (figure 8-2). These results imply that genEdge node

selection strategy performs excellently with competitive results on different community

detection algorithm in comparison with other strategies.

162

The second observation we obtain from figures 8-1 and 8-2 is that the top-of-the-list

node seems to be essential to the network community structure. The removal of only

this node from the network brings the NMI scores to as low as 0.7 - 0.8 on AFOCS

(figure 8-1A, 8-2A), to 0.58 - 0.6 on Blondel algorithm (figure 8-1B, 8-2B), and to 0.7

on Oslom algorithm. Furthermore, the top 15-20 nodes are also vital to the network

community structure detected by Oslom and Blondel since their destruction brings

the NMI scores down to 0.5, the threshold where the community structure become

stochastic and fuzzy to recognize. The NMI values on AFOCS algorithm, on the other

hand, do not suffer from this destruction as they only come close to 0.5 when almost

k = 50 nodes are removed from the networks with N = 2500 nodes (figure 8-1A).

Finally, the last observation inferred from figures 8-1 and 8-2 is that, among the

three community detection algorithms, AFOCS algorithm obtains the highest remaining

NMI values when the same number of nodes is removed from the networks. In other

words, AFOCS was able to detect the community structure which was of the most

similarity to the ground-truth communities. As we discussed above, this observation

implies that AFOCS seems to be the detection algorithm which is more resistant to

node vulnerability than the other algorithms. Therefore, we employ AFOCS as the main

community detection algorithm to further analyze network communities of real-world

traces.

8.5.1.2 The Number of Communities and Their Sizes

We next examine the number of communities and their sizes when k important

nodes are removed from the network. As discussed in subsection 8.4, our selection

strategy gives priority to breaking the current community structure into more communities

while looking for their sizes to be relatively the same in order to minimize NMI measure.

The results are presented in figure 8-3.

As reported in these figures, the numbers of new communities generated by

genEdge tend to increase as more nodes are excluded; however, they differ insignificantly

163

Table 8-1. Statistic of social traces
Data N M Avg. Deg Max.

Com. Size
Reality 100 3100 62 35
Facebook 63731 1.5M 23.50 33425
Foursquare 47260 1.1M 49.13 30381

from other methods on small networks of 2500 nodes (figure 8-3A), but the differences

become more visible on larger networks of 5000 nodes (figure 8-3C). In particular, the

number of communities generated by genEdge is the second highest when N = 5000

(only below betweeness method) while the average sizes of communities are relatively

equal to other methods (figure 8-3B and 8-3D). One might question why the NMI

scores returned by genEdge is still high since its number of communities and average

community size are relatively the same as the other. One possible reason is because

new communities formed by other strategies might possibly be the subcommunities

or parts of of the original structure, which in turn results in high similarity to the

ground-truth. Our strategy, on the other hand, makes sure that once a node incident

to the most generating edges is excluded, the subcommunity structure is broken and

the new community structure has little similarity to the original one, and hence, the lower

NMI measures.

8.5.2 Results on Real World Traces

We further present the empirical results of CSV on real-world networks including

Reality mobile phone data [82], Facebook [61] and Foursquare [109] datasets. The

overview of these datasets is summarized in Table 8-1.

Reality Mining dataset provided by the MIT Media Lab. This dataset contains

communication, proximity, location, call, and activity information from 100 students

at MIT over the course of the 2004-2005 academic year. Facebook dataset contains

friendship information (i.e., who is friend with whom and wall posts) among New

164

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

N
M

I

Number of removal nodes k

higDeg
betweeness

genEdge
nodeImp

A Reality

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

N
M

I

Number of removal nodes k

higDeg
betweeness

genEdge
nodeImp

B Foursquare

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

N
M

I

Number of removal nodes k

higDeg
betweeness

genEdge

C Facebook

Figure 8-4. NMI scores on Reality mining data, Foursquare and Facebook networks
obtained by AFOCS (k = 50...1000)

165

Orleans regional network on Facebook, spanning from Sep 2006 to Jan 2009. To

collect the information, the authors created several Facebook accounts, joined each

to the regional network, started crawling from a single user and visited all friends in a

breath-first-search fashion. Foursquare dataset contains location and activities of 47260

users on Foursquare social network on May 2011 - Jul 2011. To collect the data, we

created several Foursquare accounts, joined to the network, started crawling from a

single user and visited all friends also in a breadth-first-search fashion.

On Reality Mining dataset, we set k = 1...20 and report result in figure 8-4A. It

reveals from this figure that community structure in this dataset is extremely vulnerable

to node attacks since the removal of only 2 nodes, found by genEdge is enough to make

the new community structure significantly differs from the original one as it brings down

the NMI values to 0.4. In comparison with other node selection methods, genEdge still

perform excellently and is about 14% - 17% better than the others. We note that the first

node identified by genEdge is indeed crucial to the community structure of this network

since it immediately brings down NMI score to 0.6 while the other does not seem to

discover this important feature. Furthermore, when too many nodes are removed from

the network, the network does seem to contain communities any more or the community

structure become extremely fuzzy as NMI values converge down to around 0.2. This is

understandable since this dataset is of small size with a very high average node degree.

On larger networks Facebook and Foursquare, we set k from 50 nodes to 1000

nodes (only 2.1% and 1.5% number of nodes of Foursquare and Facebook networks)

with a 50-node increment at a time. The numerical results are reported in figure 8-4.

In general, NMI values of all methods degrade quickly on Foursquare networks, and

tend to decrease slower on Facebook networks. As more nodes are excluded from the

network, genEdge still achieves the best performance on both networks with significantly

lower NMI values than the other methods. Specifically, on Foursquare with high average

degree and internal community density, the removal of nodes incident to the most

166

generating edges in genEdge significantly leads to the separation of network community

structure as NMI scores drop down to 0.2 in genEdge. On Facebook network, the

similarity between the original and new community structure seem to retain fairly high

even all 1000 nodes are removed, whereas the new structure of ArXiv network is at

the edge of stochastic threshold since the NMI measure is around 0.5. This implies

that community structure in Foursquare network is also extremely vulnerable to node

removal attacks, while the mature Facebook network does not seem to suffer this threat.

One possible reason for this is since Facebook contains a giant community with low

average degree, it therefore requires much more effort in order to break that giant

community apart.

In summary, the experiments on both synthesized and real-work social network

confirm the effectiveness of our proposed method based on generating edges. The

empirical results also confirm that, genEdge outperforms other heuristic methods on

other community detection methods such as AFOCS, Blondel and Oslom algorithms.

8.6 An Application in DTNs

We present a practical application where the detection of overlapping network

communities plays a vital role in forwarding strategies in communication networks.

In order to evaluate the impact of community restructuring in complex networks, we

compare the set of critical nodes identified by our community structure vulnerability

algorithm to the set of nodes selected using aforementioned algorithms. Furthermore, in

order to evaluate which one of the critical node set is the most critical, we study how the

removal of the critical node set influences the performance of routing in Pocket Switched

Networks (PSN), in terms of average message delivery ratio, and delivery-time.

PSNs are a particular case of DTNs, where the nodes of the network correspond

to actual people that are equipped with portable devices (i.e., mobile phones), and

that use these portable devices to communicate. Because of the high degree of

mobility of this type of networks, a path between a source and a destination seldom

167

exists, therefore most of the approaches to routing in this kind of environments adopt a

store-carry-and-forward approach. In store-carry-and-forward approaches, messages

are stored locally and, depending on the approach, they are forwarded or replicated to

the encountered nodes when an opportunity occurs. In this manner, a node is important

if it serves as a hub to forward the messages to other devices. As a result, the failures of

these important nodes shall degrade the message delivery ratio while shall incur more

duplicate messages and delivery time.

We use the HAGGLE dataset [110]. This trace was collected at the Infocom

conference in 2006 in Barcelona. 70 students and researchers attending the workshop

were equipped with iMote devices that registered they encounter for the duration of

the conference (3 days). In addition to the 70 mobile partecipants, approximately 20

static, long range iMotes were deployed throughout the area of the conference. A total

of 1000 messages are created and uniformly distributed during the experiment duration

and each message can not exist longer than a threshold time-to-live. In our evaluation

we will focus on the PSN routing algorithm inspired by BubbleRap [106]. While we

expect the performance of this protocol to deteriorate upon the removal of important

nodes, we expect the performances of BubbleRap to deteriorate more quickly, because

of the reliance of the protocol on the community structure. Because BubbleRap relies

on the knowledge of the community structure to route the messages, and because we

realize that different algorithms that attempt to find the community structure use different

objective functions that may be more susceptible to the removal of nodes, we consider

evaluate the average delivery ratio, average delivery time and the average number of

copied messages.

Results

As the removal of 10 node in Haggle dataset is enough to make it original

community structure to become stochastic (figure 8-6), we fix k = 10 and report the

results as a function of time − to − live (the amount of time a message can exist). The

168

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350 400 450

A
v
g
.
N

u
m

.
D

e
liv

e
re

d
 M

e
s
s
a

g
e
s

Time to Live

higDeg
betweeness

nodeImp
genedge

A Avg. Delivered Messages

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400 450

A
v
g

.
D

e
liv

e
re

d
 T

im
e

Time to Live

higDeg
betweeness

nodeImp
genedge

B Avg. Delivery Time

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400 450

A
v
g
.

N
u
m

.
C

o
p
ie

d
 M

e
s
s
a
g
e
s

Time to Live

higDeg
betweeness

nodeImp
genedge

C Avg. Number of copied Messages

Figure 8-5. Simulation results on HAGGLE dataset.

169

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

N
M

I

k

higDeg
betweeness

genedge
nodeImp

Figure 8-6. NMI measure on Haggle dataset.

performances of all methods are presented in figure 8-5. As reported in subfigures

8-5A, 8-5B and 8-5C, the removal of nodes selected by genEdge approach significantly

degrades the performance of BubbleRap forwarding and routing system in terms of

not only delivered messages and time but also the numbers of copied messages. As

depicted in subfigure 8-5A, the averaged number of messages delivered by BubbleRap

under genEdge and time − to − live = 450s is only two, whereas those under highDeg,

betweeness and nodeImp are four, three and three, which implies 100% and 50%

system downgrade when only 10 nodes are excluded from the networks. This also

means nodes selected by genEdge are of important role in maintaining the normal

operation of the whole network. Furthermore, when nodes are removed from the

network, one expects that the delivery time should be increased as a consequnce

because participants now have less chances to communicate with each other, and

thus, it should take longer for participating devices to forward the carried messages.

This intuition is nicely reflected in figure 8-5B. As reported in this subfigure, the

average amount of time required to deliver carried messages increases significantly

as time − to − live increases (note that from 0-100s, there was no message delivered,

and thus, the delivery time was 0). In terms of delivery time, the removal of nodes under

170

genEdge affects the system to requires a huge extra amount to deliver the messages in

comparison with other methods. In particular, the system delivery time under genEdge is

about 1.25x, 1.7x and 1.21x higher than that under betweeness, nodeImp and highDeg

when time − to − live = 450. Moreover, the number of copied messages, affected

by genEdge approach, is also the highest one among other methods. This means

that genEdge heuristic algorithm, indeed, selects appropriate nodes whose effects

significantly reduce the system performance as reported by the three evaluated factors.

171

CHAPTER 9
CONCLUSIONS

In this dissertation, we establish the fundamental knowledge on the following

aspects of the complex network science (1) the network organizational principals via

the discovery of its dynamic community structure (2) the assessment of the community

structure vulnerability, and (3) the social-based solutions for practical applications

enabled by complex systems, such as in online social networks and mobile networks.

We suggested two adaptive frameworks for discovering the dynamic network community

structure and analyze theoretical results that guarantee their performances. In the

execution perspective, our methods are adaptive, and thus, are scalable for very large

networks with very competitive experimental results.

To investigate the assessment of the network community structure vulnerability,

we introduce the new problem of identifying key nodes whose removal can maximally

reform the current network communities. Those nodes are important in maintaining

the normal functioning of the whole system, such as in the case of DTNs (in a mobile

network) or lung cancer (in a biological network). Our work presents first and preliminary

yet important insights, in terms of both theoretical results and heuristic algorithms, into

the vulnerability assessment of the network community structure.

In an application perspective, our work in this dissertation focuses on proposing

novel community structure-based solutions for the following emerging problems: the

forwarding and routing strategy in mobile networks, the worm containment problem in

social networks and the limiting misinformation spread in online social networks. Our

suggested strategies provide a significant improvement in terms of the solution quality

for those mentioned problems, and promise a wider range of applications enabled by

dynamic complex networks.

172

REFERENCES

[1] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,
June 2002.

[2] G. Palla, P. Pollner, A. Barabasi, and T. Vicsek. Social group dynamics in
networks. Adaptive Networks, 2009.

[3] Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: A
comparative analysis. Phys. Rev. E, 80:056117, Nov 2009.

[4] M. E. J. Newman. Fast algorithm for detecting community structure in networks.
Phys. Rev. E, 69:066133, Jun 2004.

[5] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[6] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical Review, E 69(026113), 2004.

[7] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran
Nikoloski, and Dorothea Wagner. On modularity clustering. IEEE Trans. on Knowl.
and Data Eng., 20(2):172–188, February 2008.

[8] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community
structure in very large networks. Physical Review E, 70(6):066111+, December
2004.

[9] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75 –
174, 2010.

[10] Fei Wang, Tao Li, Xin Wang, Shenghuo Zhu, and Chris Ding. Community
discovery using nonnegative matrix factorization. Data Min. Knowl. Discov.,
22(3):493–521, May 2011.

[11] Tao Li and Chris Ding. The relationships among various nonnegative matrix
factorization methods for clustering. In Proceedings of the Sixth International
Conference on Data Mining, ICDM ’06, pages 362–371, Washington, DC, USA,
2006. IEEE Computer Society.

[12] Chris Ding, Tao Li, and Wei Peng. On the equivalence between non-negative
matrix factorization and probabilistic latent semantic indexing. Comput. Stat. Data
Anal., 52(8):3913–3927, April 2008.

[13] Yu-Ru Lin, Jimeng Sun, Paul Castro, Ravi Konuru, Hari Sundaram, and Aisling
Kelliher. Metafac: community discovery via relational hypergraph factorization. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge

173

discovery and data mining, KDD ’09, pages 527–536, New York, NY, USA, 2009.
ACM.

[14] I. Psorakis, S. Roberts, and M. Ebden. Overlapping community detection using
bayesian non-negative matrix factorization. Phys. Rev. E. 83, 11.

[15] Fei Wang, Tao Li, Xin Wang, Shenghuo Zhu, and Chris Ding. Community
discovery using nonnegative matrix factorization. Data Min. Knowl. Discov.,
22(3):493–521, May 2011.

[16] Zhichao Zhu, Guohong Cao, Sencun Zhu, S. Ranjan, and A. Nucci. A social
network based patching scheme for worm containment in cellular networks. In
INFOCOM 2009, IEEE, pages 1476 –1484, april 2009.

[17] N.P. Nguyen, T.N. Dinh, Ying Xuan, and M.T. Thai. Adaptive algorithms for
detecting community structure in dynamic social networks. In INFOCOM, 2011
Proceedings IEEE, pages 2282 –2290, april 2011.

[18] N.P. Nguyen, Ying Xuan, and M.T. Thai. A novel method for worm containment
on dynamic social networks. In MILITARY COMMUNICATIONS CONFERENCE,
2010 - MILCOM 2010, pages 2180 –2185, 31 2010-nov. 3 2010.

[19] Gergely Palla, Albert-Laszlo Barabasi, and Tamas Vicsek. Quantifying social
group evolution. Nature, 446(7136):664–667, April 2007.

[20] Mohsen Jamali, Gholamreza Haffari, and Martin Ester. Modeling the temporal
dynamics of social rating networks using bidirectional effects of social relations
and rating patterns. In Proceedings of the 2010 IEEE International Conference
on Data Mining Workshops, ICDMW ’10, pages 344–351, Washington, DC, USA,
2010. IEEE Computer Society.

[21] Thang N. Dinh, Ying Xuan, My T. Thai, Panos M. Pardalos, and Taieb Znati. On
new approaches of assessing network vulnerability: hardness and approximation.
IEEE/ACM Trans. Netw., 20(2):609–619, April 2012.

[22] Karsten Peters, Lubos Buzna, and Dirk Helbing. Modelling of cascading effects
and efficient response to disaster spreading in complex networks. IJCIS,
4(1/2):46–62, 2008.

[23] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. PNAS, 99, 2002.

[24] M E J Newman. The structure and function of complex networks. SIAM Review,
45(2):167–256, 2003.

[25] Earl R. Barnes. An algorithm for partitioning the nodes of a graph. SIAM Journal
on Algebraic and Discrete Methods, 3(4):541–550, 1982.

174

[26] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, December 2007.

[27] Joerg Reichardt and Stefan Bornholdt. Detecting fuzzy community structures in
complex networks with a potts model. Physical Review Letters, 93(21):218701,
2004.

[28] M E J Newman and E A Leicht. Mixture models and exploratory analysis in
networks. Proceedings of the National Academy of Sciences of the United States
of America, 104(23):9564–9569, 2007.

[29] Weinan E, Tiejun Li, and Eric Vanden-Eijnden. Optimal partition and effective
dynamics of complex networks. Proceedings of the National Academy of Sciences
of the United States of America, 105(23):7907–7912, 2008.

[30] Yuzhou Zhang, Jianyong Wang, Yi Wang, and Lizhu Zhou. Parallel community
detection on large networks with propinquity dynamics. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining,
KDD ’09, pages 997–1006, New York, NY, USA, 2009. ACM.

[31] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu.
Graphscope: parameter-free mining of large time-evolving graphs. In Proceedings
of the 13th ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’07, pages 687–696, New York, NY, USA, 2007. ACM.

[32] Pan Hui, Eiko Yoneki, Shu Yan Chan, and Jon Crowcroft. Distributed community
detection in delay tolerant networks. In Proceedings of 2nd ACM/IEEE interna-
tional workshop on Mobility in the evolving internet architecture, MobiArch ’07,
pages 7:1–7:8, New York, NY, USA, 2007. ACM.

[33] John Hopcroft, Omar Khan, Brian Kulis, and Bart Selman. Tracking evolving
communities in large linked networks. Proceedings of the National Academy of
Sciences, 101:5249–5253, April 2004.

[34] Chayant Tantipathananandh and Tanya Berger-Wolf. Constant-factor
approximation algorithms for identifying dynamic communities. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’09, pages 827–836, New York, NY, USA, 2009. ACM.

[35] T.N. Dinh, Ying Xuan, and M.T. Thai. Towards social-aware routing in dynamic
communication networks. In Performance Computing and Communications
Conference (IPCCC), 2009 IEEE 28th International, pages 161 –168, dec. 2009.

[36] Yu-Ru Lin, Yun Chi, Shenghuo Zhu, Hari Sundaram, and Belle L. Tseng. Facetnet:
a framework for analyzing communities and their evolutions in dynamic networks.
In Proceedings of the 17th international conference on World Wide Web, WWW
’08, pages 685–694, New York, NY, USA, 2008. ACM.

175

[37] Dongsheng Duan, Yuhua Li, Yanan Jin, and Zhengding Lu. Community mining on
dynamic weighted directed graphs. In Proceedings of the 1st ACM international
workshop on Complex networks meet information & knowledge management,
CNIKM ’09, pages 11–18, New York, NY, USA, 2009. ACM.

[38] Min-Soo Kim and Jiawei Han. A particle-and-density based evolutionary clustering
method for dynamic networks. Proc. VLDB Endow., 2(1):622–633, August 2009.

[39] R. Cazabet, F. Amblard, and C. Hanachi. Detection of overlapping communities in
dynamical social networks. In Social Computing (SocialCom), 2010 IEEE Second
International Conference on, pages 309 –314, aug. 2010.

[40] Andrea Lancichinetti, Filippo Radicchi, Jos J. Ramasco, and Santo Fortunato.
Finding statistically significant communities in networks. PLoS ONE, 6(4):e18961,
04 2011.

[41] M. E. J. Newman. Finding community structure in networks using the eigenvectors
of matrices. Physical Review E, 74(3):036104, 2006.

[42] G. Palla, I. Derenyi, I. Farkas1, and T. Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature, 435(10),
2005.

[43] C. Lee, F. Reid, A. McDaid, and N. Hurley. Detecting highly overlapping
community structure by greedy clique expansion. Proceedings of the 4th Work-
shop on Social Network Mining and Analysis, Feb 2010.

[44] A. Lazar, D. Abel, and T. Vicsek. Modularity measure of networks with overlapping
communities. EPL (Europhysics Letters), 90(1):18001, 2010.

[45] V. Nicosia, G. Mangioni, V. Carchiolo, and M. Malgeri. Extending the definition
of modularity to directed graphs with overlapping communities. J. Stat. Mech.:
Theory and Experiment, 2009(03):P03024, 2009.

[46] A. Lancichinetti, S. Fortunato, and K. Jnos. Detecting the overlapping and
hierarchical community structure in complex networks. New Journal of Physics,
11(3):033015, 2009.

[47] Steve Gregory. Finding overlapping communities in networks by label propagation.
New Journal of Physics, 12(10):103018, 2010.

[48] Yong-Yeol Ahn, James P. Bagrow, and Sune Lehmann. Link communities reveal
multi-scale complexity in networks. Nature, 466:761+, October 2010.

[49] J-C C. Delvenne, S. N. Yaliraki, and M. Barahona. Stability of graph communities
across time scales. Proceedings of the National Academy of Sciences of the
United States of America, 107(29):12755–12760, July 2010.

176

[50] Andrea Lancichinetti and Santo Fortunato. Consensus clustering in complex
networks. Scientific Reports, 2, March 2012.

[51] Yanhua Li, Zhi-Li Zhang, and Jie Bao. Mutual or unrequited love: Identifying stable
clusters in social networks with uni- and bi-directional links. In Anthony Bonato
and Jeannette Janssen, editors, Algorithms and Models for the Web Graph,
volume 7323 of Lecture Notes in Computer Science, pages 113–125. Springer
Berlin Heidelberg, 2012.

[52] T. H. Grubesic, T. C. Matisziw, A. T. Murray, and D. Snediker. Comparative
approaches for assessing network vulnerability. Inter. Regional Sci. Review, 31,
2008.

[53] Jerry Scripps, Pang-Ning Tan, and Abdol-Hossein Esfahanian. Node roles
and community structure in networks. In Proceedings of the 9th WebKDD and
1st SNA-KDD 2007 workshop on Web mining and social network analysis,
WebKDD/SNA-KDD ’07, pages 26–35, New York, NY, USA, 2007. ACM.

[54] Yang Wang, Zengru Di, and Ying Fan. Identifying and characterizing nodes
important to community structure using the spectrum of the graph. PLoS ONE,
6(11):e27418, 11 2011.

[55] Roger Guimera and Luis A. Nunes Amaral. Functional cartography of complex
metabolic networks. Nature, 433(7028):895–900, feb 2005.

[56] Istvan A. Kovacs, Robin Palotai, Mate S. Szalay, and Peter Csermely. Community
landscapes: An integrative approach to determine overlapping network module
hierarchy, identify key nodes and predict network dynamics. PLoS ONE,
5(9):e12528, 09 2010.

[57] Timothy C. Matisziw and Alan T. Murray. Modeling s-t path availability to support
disaster vulnerability assessment of network infrastructure. Comput. Oper. Res.,
36(1):16–26, January 2009.

[58] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection.
Proceedings of the National Academy of Sciences, 104(1):36–41, 2007.

[59] Zhenqing Ye, Songnian Hu, and Jun Yu. Adaptive clustering algorithm for
community detection in complex networks. Phys. Rev. E, 78:046115, Oct 2008.

[60] ArXiv dataset. http://www.cs.cornell.edu/projects/kddcup/datasets.html. KDD Cup
2003, Feb 2003.

[61] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi. On
the evolution of user interaction in facebook. In Proceedings of the 2nd ACM
workshop on Online social networks, WOSN ’09, pages 37–42, New York, NY,
USA, 2009. ACM.

177

[62] S. Fortunato and C. Castellano. Community structure in graphs. eprint arXiv:
0712.2716, 2007.

[63] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and
Domenico Parisi. Defining and identifying communities in networks. Proceed-
ings of the National Academy of Sciences of the United States of America,
101(9):2658–2663, 2004.

[64] Santo Fortunato. Community detection in graphs. Physics Reports, 486:75–174,
2010.

[65] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.
Statistical properties of community structure in large social and information
networks. In Proceedings of the 17th international conference on World Wide
Web, WWW ’08, pages 695–704, New York, NY, USA, 2008. ACM.

[66] M. Goldberg, S. Kelley, M. Magdon-Ismail, K. Mertsalov, and A. Wallace. Finding
overlapping communities in social networks. In Social Computing (SocialCom),
2010 IEEE Second International Conference on, pages 104 –113, aug. 2010.

[67] Yu-Ru Lin, Yun Chi, Shenghuo Zhu, Hari Sundaram, and Belle L. Tseng.
Analyzing communities and their evolutions in dynamic social networks. ACM
Trans. Knowl. Discov. Data, 3(2):8:1–8:31, April 2009.

[68] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix
factorization. In In NIPS, pages 556–562. MIT Press, 2000.

[69] A. Cichocki and R. Zdunek. Multilayer nonnegative matrix factorization using
projected gradient approaches. Proc. 13th International Conference on Neural
Information Processing, ’07.

[70] Rafal Zdunek and Andrzej Cichocki. Non-negative matrix factorization with
quasi-newton optimization. In Proceedings of the 8th international conference
on Artificial Intelligence and Soft Computing, ICAISC’06, pages 870–879, Berlin,
Heidelberg, 2006. Springer-Verlag.

[71] A. Cichocki, R. Zdunek, and S.-i. Amari. Nonnegative matrix and tensor
factorization [lecture notes]. Signal Processing Magazine, IEEE, 25(1):142
–145, 2008.

[72] Michael W. Berry, Murray Browne, Amy N. Langville, V. Paul Pauca, and Robert J.
Plemmons. Algorithms and applications for approximate nonnegative matrix
factorization. In Computational Statistics and Data Analysis, pages 155–173,
2006.

[73] A. Cichocki, H. Lee, Y-D Kim, and S. Choi. Non-negative matrix factorization with
α-divergence. Pattern Recognition Letters, ’08.

178

[74] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-ichi Amari. Nonnega-
tive Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data
Analysis and Blind Source Separation. Wiley Publishing, 2009.

[75] P. Panzarasa, T. Opsahl, and K. M. Carley. Patterns and dynamics of users’
behavior and interaction: Network analysis of an online community. J. American
Soc. of Info. Sci. Tech. 60(5), ’09.

[76] Nam P. Nguyen, Thang N. Dinh, Sindhura Tokala, and My T. Thai. Overlapping
communities in dynamic networks: their detection and mobile applications. In
Proceedings of the 17th annual international conference on Mobile computing and
networking, MobiCom ’11, pages 85–96, New York, NY, USA, 2011. ACM.

[77] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities. Phys. Rev. E, 80(1):016118, July 2009.

[78] Pan Hui and Jon Crowcroft. How small labels create big improvements. In Perva-
sive Computing and Communications Workshops, 2007. PerCom Workshops ’07.
Fifth Annual IEEE International Conference on, pages 65 –70, march 2007.

[79] Elizabeth M. Daly and Mads Haahr. Social network analysis for routing in
disconnected delay-tolerant manets. In Proceedings of the 8th ACM international
symposium on Mobile ad hoc networking and computing, MobiHoc ’07, pages
32–40, New York, NY, USA, 2007. ACM.

[80] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass, and
James Scott. Impact of human mobility on opportunistic forwarding algorithms.
Mobile Computing, IEEE Transactions on, 6(6):606 –620, june 2007.

[81] Pan Hui, J. Crowcroft, and E. Yoneki. Bubble rap: Social-based forwarding in
delay-tolerant networks. Mobile Computing, IEEE Transactions on, 10(11):1576
–1589, nov. 2011.

[82] Nathan Eagle and Alex (Sandy) Pentland. Reality mining: sensing complex social
systems. Personal Ubiquitous Comput., 10(4):255–268, March 2006.

[83] Foobface. facebook virus turns your computer into a zombie.html,
http://www.pcworld.com/article/155017/. In PC World, page 1, 2008.

[84] Koobface. http://news.cnet.com/koobface-virus-hits-facebook/. In CNET, page 1,
2008.

[85] Vyas Sekar, Yinglian Xie, Michael K. Reiter, and Hui Zhang. A multi-resolution
approach forworm detection and containment. In Proceedings of the International
Conference on Dependable Systems and Networks, DSN ’06, pages 189–198,
Washington, DC, USA, 2006. IEEE Computer Society.

179

[86] Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very fast containment of
scanning worms. In Proceedings of the 13th conference on USENIX Security
Symposium - Volume 13, SSYM’04, pages 3–3, Berkeley, CA, USA, 2004.
USENIX Association.

[87] Hyang-Ah Kim and Brad Karp. Autograph: toward automated, distributed worm
signature detection. In Proceedings of the 13th conference on USENIX Security
Symposium - Volume 13, SSYM’04, pages 19–19, Berkeley, CA, USA, 2004.
USENIX Association.

[88] Pu Wang, Marta C. González, Cesar A. Hidalgo, and Albert-Laszlo Barabasi.
Understanding the Spreading Patterns of Mobile Phone Viruses. Science,
324(5930):1071–1076, May 2009.

[89] Abhijit Bose and Kang G. Shin. Proactive security for mobile messaging networks.
In Proceedings of the 5th ACM workshop on Wireless security, WiSe ’06, pages
95–104, New York, NY, USA, 2006. ACM.

[90] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and
negative links in online social networks. In Proceedings of the 19th international
conference on World wide web, WWW ’10, pages 641–650, New York, NY, USA,
2010. ACM.

[91] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social
networks. In Proceedings of the twelfth international conference on Information
and knowledge management, CIKM ’03, pages 556–559, New York, NY, USA,
2003. ACM.

[92] Lars Backstrom and Jure Leskovec. Supervised random walks: predicting
and recommending links in social networks. In Proceedings of the fourth ACM
international conference on Web search and data mining, WSDM ’11, pages
635–644, New York, NY, USA, 2011. ACM.

[93] Michael Fire, Lena Tenenboim, Ofrit Lesser, Rami Puzis, Lior Rokach, and
Yuval Elovici. Link prediction in social networks using computationally efficient
topological features. In SocialCom/PASSAT, pages 73–80. IEEE, 2011.

[94] John G. Kemeny, Mirkil Hazleton, Snell J. Laurie, and Thompson Gerald L. Finite
mathematical structures. 1st edition. Englewood Cliffs, N.J.: Prentice-Hall, Inc,
1959.

[95] Carlo Piccardi. Finding and testing network communities by lumped markov
chains. PLoS ONE, 6(11):e27028, 11 2011.

[96] Meyn Sean P. and Tweedie Richard L. Markov chains and stochastic stability. 2nd
edition. Cambridge University Press, 2009.

180

[97] K H Hoffmann and P Salamon. Bounding the lumping error in markov chain
dynamics. Applied Mathematics Letters, 22(9):1471–1475, 2009.

[98] Jiřı́ Šı́ma and Satu Elisa Schaeffer. On the np-completeness of some graph
cluster measures. In Proceedings of the 32nd conference on Current Trends in
Theory and Practice of Computer Science, SOFSEM’06, pages 530–537, Berlin,
Heidelberg, 2006. Springer-Verlag.

[99] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990.

[100] Martin Rosvall and Carl T. Bergstrom. Mapping change in large networks. PLoS
ONE, 5(1):e8694, 01 2010.

[101] Andrea Lancichinetti, Filippo Radicchi, Jos J. Ramasco, and Santo Fortunato.
Finding statistically significant communities in networks. PLoS ONE, 6(4):e18961,
04 2011.

[102] A. Lancichinetti and S. Fortunato. Community detection algorithms: A comparative
analysis. Phys. Rev. E, 80(5):056117, Nov 2009.

[103] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for
prevalent viral marketing in large-scale social networks. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data
mining, KDD ’10, pages 1029–1038, New York, NY, USA, 2010. ACM.

[104] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social
networks under the linear threshold model. In Proceedings of the 2010 IEEE
International Conference on Data Mining, ICDM ’10, pages 88–97, Washington,
DC, USA, 2010. IEEE Computer Society.

[105] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas. Comparing community
structure identification. Journal of Statistical Mechanics: Theory and Experiment,
2005(09):P09008, 2005.

[106] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble rap: social-based forwarding in
delay tolerant networks. In Proceedings of the 9th ACM international symposium
on Mobile ad hoc networking and computing, MobiHoc ’08, pages 241–250, New
York, NY, USA, 2008. ACM.

[107] T. M. Cover and J. A. Thomas. Elements of Information Theory.
Wiley-Interscience, 1991.

[108] K. Andreev and H. Räcke. Balanced graph partitioning. In Proceedings of the
sixteenth annual ACM symposium on Parallelism in algorithms and architectures,
SPAA ’04, pages 120–124, New York, NY, USA, 2004. ACM.

181

[109] Foursquare Data. sites.google.com/site/namnpuf/original foursquare.7z. In
Collected data, pages 0–0, 2012.

[110] James Scott, Richard Gass, Jon Crowcroft, Pan Hui,
Christophe Diot, and Augustin Chaintreau. CRAWDAD trace
cambridge/haggle/imote/infocom2006 (v. 2009-05-29). Downloaded from
http://crawdad.cs.dartmouth.edu/cambridge/haggle
/imote/infocom2006, May 2009.

[111] Y. Xuan, Y. Shen, N. P. Nguyen, and M. T. Thai. A graph-theoretic qos-aware
vulnerability assessment for network topologies. In 2010 IEEE Global Telecommu-
nications Conference GLOBECOM 2010, pages 1–5, Dec 2010.

[112] Yilin Shen, Nam P. Nguyen, and My T. Thai. Exploiting the robustness on
power-law networks. In Proceedings of the 17th Annual International Confer-
ence on Computing and Combinatorics, COCOON’11, pages 379–390, Berlin,
Heidelberg, 2011. Springer-Verlag.

[113] D. T. Nguyen, N. P. Nguyen, M. T. Thai, and A. Helal. An optimal algorithm for
coverage hole healing in hybrid sensor networks. In 2011 7th International
Wireless Communications and Mobile Computing Conference, pages 494–499,
July 2011.

[114] N. P. Nguyen, T. N. Dinh, D. T. Nguyen, and M. T. Thai. Overlapping community
structures and their detection on social networks. In 2011 IEEE Third International
Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International
Conference on Social Computing, pages 35–40, Oct 2011.

[115] Nam P. Nguyen, Guanhua Yan, My T. Thai, and Stephan Eidenbenz. Containment
of misinformation spread in online social networks. In Proceedings of the 4th
Annual ACM Web Science Conference, WebSci ’12, pages 213–222, New York,
NY, USA, 2012. ACM.

[116] D. T. Nguyen, N. P. Nguyen, and M. T. Thai. Sources of misinformation in online
social networks: Who to suspect? In MILCOM 2012 - 2012 IEEE Military Commu-
nications Conference, pages 1–6, Oct 2012.

[117] N. P. Nguyen and M. T. Thai. Finding overlapped communities in online social
networks with nonnegative matrix factorization. In MILCOM 2012 - 2012 IEEE
Military Communications Conference, pages 1–6, Oct 2012.

[118] T. N. Dinh, N. P. Nguyen, and M. T. Thai. An adaptive approximation algorithm for
community detection in dynamic scale-free networks. In 2013 Proceedings IEEE
INFOCOM, pages 55–59, April 2013.

182

[119] N. P. Nguyen, M. A. Alim, Y. Shen, and M. T. Thai. Assessing network vulnerability
in a community structure point of view. In 2013 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining (ASONAM 2013),
pages 231–235, Aug 2013.

[120] Md Abdul Alim, Nam P. Nguyen, Thang N. Dinh, and My T. Thai. Structural
vulnerability analysis of overlapping communities in complex networks. In
Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 01, WI-IAT ’14,
pages 5–12, Washington, DC, USA, 2014. IEEE Computer Society.

[121] Dung T. Nguyen, Nam P. Nguyen, My T. Thai, and Abdelsalam Helal. Optimal and
distributed algorithms for coverage hole healing in hybrid sensor networks. Int. J.
Sen. Netw., 11(4):228–240, June 2012.

[122] Y. Xuan, Y. Shen, N. P. Nguyen, and M. T. Thai. A trigger identification service
for defending reactive jammers in wsn. IEEE Transactions on Mobile Computing,
11(5):793–806, May 2012.

[123] Y. Shen, N. P. Nguyen, Y. Xuan, and M. T. Thai. On the discovery of critical
links and nodes for assessing network vulnerability. IEEE/ACM Transactions on
Networking, 21(3):963–973, June 2013.

[124] Y. Xuan, Y. Shen, N. P. Nguyen, and M. T. Thai. Efficient multi-link failure
localization schemes in all-optical networks. IEEE Transactions on Communi-
cations, 61(3):1144–1151, March 2013.

[125] Nam P. Nguyen, Guanhua Yan, and My T. Thai. Analysis of misinformation
containment in online social networks. Comput. Netw., 57(10):2133–2146, July
2013.

[126] Thang N. Dinh, Nam P. Nguyen, Md Abdul Alim, and My T. Thai. A near-optimal
adaptive algorithm for maximizing modularity in dynamic scale-free networks. J.
Comb. Optim., 30(3):747–767, October 2015.

[127] Nam P. Nguyen, Thang N. Dinh, Yilin Shen, and My T. Thai. Dynamic social
community detection and its applications. PLOS ONE, 9(4):1–18, 04 2014.

[128] Nam P. Nguyen, Md Abdul Alim, Thang N. Dinh, and My T. Thai. A method to
detect communities with stability in social networks. Social Network Analysis and
Mining, 4(1):224, 2014.

183

BIOGRAPHICAL SKETCH

Nam P. Nguyen is currently at his fourth year PhD student in Department of

Computer and Information Science and Engineering (CISE), University of Florida

and a member of Optima Network Science Lab under the guidance of Professor My T.

Thai. Prior to his Ph.D. study, Nam received my B.S. and M.S. degrees both in applied

mathematics from Vietnam National University (2007) and Ohio University (2009).

His research interests include dynamic complex network problems, such as

non-overlapping and overlapping network community structure, worm and virus

containment, social networks; cascading failures; combinatorial optimization and

approximation algorithms. In particular, his current research focuses on designing

adaptive algorithms for effectively identify communities in dynamic networks such as

mobile or online social networks, as well as their applications in different aspects of

networking problems. In addition, he is also interested in effective methods to stop the

propagation of virus, worm and misinformation spread on large scale dynamic networks,

in terms of both approximation and social-based algorithms.

During his Ph.D. study, Nam has published many papers in top-tier conferences and

journals including INFOCOM, MOBICOM, WEBSCI and IEEE Transaction on Mobile

Computing, IEEE Transaction on Networking, etc. In 2011, Nam spent his summer as

an intern in CCS-3 division, Los Alamos National Laboratories, where he conducted

research and published a paper on containing the spread of misinformation in large

scale online social networks. Nam also the recipient of many awards such as the

Student Travel Grants of MILCOM’10, MOBICOM’11 and SIGWEB’12 conferences,

Travel Grant of The College of the Engineering in 2011, University of Florida.

The full list of publications that has been accomplished during his PhD is [[17, 18,

76, 111–128]]

184

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Community Detection in Dynamic Complex Networks
	1.2 Nonnegative Matrix Factorization for Community Detection
	1.3 Applications of The Network Community Structure
	1.4 The Identification of Stable Communities
	1.5 The Assessment of Network Community Structure Vulnerability
	1.6 Literature Review
	1.7 Dissertation outline

	2 NONOVERLAPPING COMMUNITY STRUCTURE DETECTION
	2.1 Problem Definition
	2.2 Algorithm Description
	2.2.1 New Node
	2.2.2 New Edge
	2.2.3 Node Removal
	2.2.4 Edge Removal

	2.3 Experimental Results
	2.3.1 Results on Synthesized Networks
	2.3.2 Results on Real World Traces

	3 OVERLAPPING COMMUNITY STRUCTURE DETECTION
	3.1 Problem Formulation
	3.1.1 Basic Notations
	3.1.2 Dynamic Network Model
	3.1.3 Density Function
	3.1.4 Objective Function
	3.1.5 Problem Definition

	3.2 Basic Community Structure Detection
	3.2.1 Locating Local Communities
	3.2.2 Combining Overlapping Communities
	3.2.3 Revisiting Unassigned Nodes

	3.3 Detecting Evolving Network Communities
	3.3.1 Handling a New Node
	3.3.2 Handling a New Edge
	3.3.3 Removing an Existing Node
	3.3.4 Removing an Existing Edge
	3.3.5 Remarks
	3.3.6 Complexity

	3.4 Experimental Results
	3.4.1 Choosing the Overlapping Threshold
	3.4.2 Reference to Static Methods
	3.4.3 Reference to Other Dynamic Methods

	4 COMMUNITY STRUCTURE DETECTION USING NONNEGATIVE MATRIX FACTORIZATION
	4.1 Problem Definition and Properties
	4.1.1 Motivation for NMF in Community Detection
	4.1.2 Problem Definitions
	4.1.3 Properties of iSNMF and iANMF factorizations

	4.2 The Update Rule for iSNMF
	4.2.1 Multiplicative Update Rule
	4.2.2 Quasi-Newton Method for iSNMF

	4.3 Update Rules for iANMF
	4.3.1 Multiplicative Update Rules

	4.4 Experimental Results
	4.4.1 Empirical Results on Synthesized Networks
	4.4.2 Results on Real Networks

	5 SOCIAL-AWARE ROUTING STRATEGIES IN MOBILE AD-HOC NETWORKS
	5.1 A Message Forwarding and Routing Strategy Employing QCA
	5.1.1 Setup
	5.1.2 Results

	5.2 A Message Forwarding and Routing Strategy Employing AFOCS
	5.2.1 Message Forwarding Strategy
	5.2.2 Setup
	5.2.3 Results

	6 SOLUTIONS FOR WORM CONTAINMENT IN ONLINE SOCIAL NETWORKS
	6.1 An Application of QCA in Containing Worms in OSNs
	6.1.1 Setup
	6.1.2 Results

	6.2 Containing Worms with Overlapping Communities Detected by AFOCS
	6.2.1 Setup
	6.2.2 Results

	7 STABLE COMMUNITY DETECTION IN ONLINE SOCIAL NETWORKS
	7.1 Basic Notations
	7.2 Link Stability Estimation
	7.2.1 Link Reciprocity Prediction
	7.2.2 Link Stability Estimation

	7.3 Stable Community Detection
	7.3.1 Lumped Markov Chain
	7.3.2 The Connection to Network Topology
	7.3.3 Detecting Communities
	7.3.3.1 Formulation
	7.3.3.2 Resolution limit analysis
	7.3.3.3 Connection to stability estimation
	7.3.3.4 A greedy algorithm for SCD problem

	7.4 Experimental Results
	7.4.1 Datasets
	7.4.2 Metric
	7.4.3 Effect of Link Stability Estimation
	7.4.4 General Community Structure Detection
	7.4.5 Results on Stable Community Detection

	7.5 Conclusion

	8 ASSESSING NETWORK COMMUNITY STRUCTURE VULNERABILITY
	8.1 Introduction
	8.2 Problem Definition
	8.3 Analysis of NMI Measure
	8.3.1 NMI Formulation
	8.3.2 Minimizing NMI in a Disjoint Community Structure
	8.3.2.1 Minimizing NMI within a community
	8.3.2.2 Minimizing NMI in a general disjoint community structure

	8.3.3 Minimizing NMI in an Overlapped Community Structure

	8.4 A Solution to CSV Problem
	8.5 Experimental Results
	8.5.1 Results on Synthesized Networks
	8.5.1.1 Solution quality
	8.5.1.2 The Number of Communities and Their Sizes

	8.5.2 Results on Real World Traces

	8.6 An Application in DTNs

	9 CONCLUSIONS
	REFERENCES
	BIOGRAPHICAL SKETCH

