
MATH 565 Spring 2019 - Class Notes

3/13/19

Scribe: Michelle Tarr

Summary: This class covered how to solve linear equations modulo n using inverses and
how to solve systems of concurrences with the Chinese Remainder Theorem.

Solving Linear Equations Modulo n

Consider ax ≡ b (mod n)

• How can we find a solution to this equation without trying every possible value of x?

• If ax ≡ b (mod n), then n | (b− ax) for some integer k, so b− ax = nk.

• We are looking for values of k and x that satisfy the equation b = nk + ax.

• Through previous investigation with the Euclidean Algorithm, we know that equations
of the form b = nk + ax have a solution if and only if gcd (a, n) | b.

Theorem 1. The equation ax ≡ b (mod n) has a solution if and only if gcd (a, n) | b. The

solution to the equation is unique if and only if gcd (a, n) = 1

Example 1: Solve 3x ≡ 5 (mod 6)
Note that gcd (3, 6) = 3 and 3 ∤ 5. Thus this equation has no solution.

Example 2: Solve 3x ≡ 12 (mod 6)
Note that gcd (3, 6) = 3 and 3 | 12. Thus this equation has solutions, but they are not
unique since gcd (3, 6) 6= 1.

x ≡ 2 (mod 6) since 3(2) ≡ 6 ≡ 12 (mod 6)
x ≡ 4 (mod 6) since 3(4) ≡ 12 (mod 6)
x ≡ 6 (mod 6) since 3(6) ≡ 18 ≡ 12 (mod 6)

Example 3: Solve 5x ≡ 2 (mod 6)
Note that gcd (5, 6) = 1. Thus this equation has a solution and it is unique.
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x 5x (mod 6)
0 0 (mod 6)
1 5 (mod 6)
2 10 ≡ 4 (mod 6)
3 15 ≡ 3 (mod 6)
4 20 ≡ 2 (mod 6)
5 25 ≡ 1 (mod 6)

Thus x ≡ 4 (mod 6) is the one unique solution.

Definition: If a · ā ≡ 1 (mod n) we say that ā is the inverse of a modulo n.

Example 4: 3 · 4 ≡ 12 ≡ 1 (mod 11), so 4 is the inverse of 3 modulo 11.

Theorem 2. If gcd (a, n) = 1, then a has a unique inverse modulo n.

Proof. To find the inverse of a we are trying to solve the equation ax ≡ 1 (mod n). By our
previous theorem we know this equation has a solution if gcd (a, n) | 1. Since gcd (a, n) = 1,
the inverse exists and is unique.

Example 5: Find the inverse of 5 (mod 21).
In order to find the inverse, we must solve the congruence 5x ≡ 1 (mod 21), which
means finding x and y such that 5x+ 21y = 1. This can be done using the Euclidean
Algorithm:

21 = 4(5) + 1
5 = 5(1) + 0

1 = 1(21)− 4(5)

Thus, x ≡ −4 ≡ 17 (mod 21) is the inverse of 5 modulo 21.

How to Solve A Linear Congruence:

Consider ax ≡ b (mod n)

• We can not divide by a in modular arithmetic so how can we cancel out a in order to
find a solution for x?

• We can use inverses and multiply both sides of the congruence by the inverse of a, ā.
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Example 6: Solve 5x ≡ 12 (mod 21).
We know that the inverse of 5 modulo 21 is 17, so to solve for x we must multiply by
17 on both sides.

5x ≡ 12 (mod 21)
17(5x) ≡ 17(12) (mod 21)

1x ≡ 204 ≡ −6 ≡ 15 (mod 21)
x ≡ 15 (mod 21)

Systems of Congruences

• If a ≡ b (mod n), then n | (b− a).

• Any factor of n also divides b-a as well

• We can write congruences in the modulo of each of these factors to create a system of
congruences.

Example 7: Consider x ≡ 11 (mod 42), which means 42 | (11− x).
Since 42 = 2 · 3 · 7, we know 2 | (11− x), 3 | (11− x), and 7 | (11− x).

x ≡ 11 ≡ 1 (mod 2)
x ≡ 11 ≡ 2 (mod 3)
x ≡ 11 ≡ 4 (mod 7)

• Can we go the other way and find one solution that works for a system of congruences
simultaneously?

Theorem 3: Chinese Remainder Theorem. If integers m1,m2, ...mk are all pairwise

coprime, so that the gcd of any pair is 1, then any set of equations:

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)

...
x ≡ ak (mod mk)

has a unique solution modulo M = m1 ·m2 · ...mk

Proof. Suppose m1,m2, ...mk are pairwise coprime integers. Let M = m1 ·m2 · ...mk be their
product. Let ni =

M
mi

be the product of all the values except mi. Note that gcd (ni,mi) = 1
since ni is the product of numbers that are all coprime with mi. Thus, each ni has an inverse
n̄i (mod mi). Compute x = a1n1n̄1 + a2n2n̄2 + ...aknkn̄k.
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Consider x ≡ a1n1n̄1+a2n2n̄2+ ...aknkn̄k (mod mj). Since mj | ni for all i 6= j, we know
that ainin̄i ≡ 0 (mod mj) for all i 6= j. This means x ≡ ajnjn̄j (mod mj). In addition,
njn̄j ≡ 1 (mod mj) because n̄j is the inverse of nj modulo j. Thus x ≡ aj (mod mj).

Therefore, x satisfies all the individual congruences x ≡ ai (mod mi) simultaneously.

Example 8: Chinese Remainder Theorem: Find x such that

x ≡ 0 (mod 2)
x ≡ 1 (mod 3)
x ≡ 6 (mod 7)

Note that 2, 3, and 7 are all pairwise coprime and that M = 2 · 3 · 7 = 42.

a1 = 0 a2 = 1 a3 = 6
m1 = 2 m2 = 3 m3 = 7
n1 = 3 · 7 = 21 n2 = 2 · 7 = 14 n3 = 2 · 3 = 6
n̄1 ≡ 21−1 (mod 2) n̄2 ≡ 14−1 (mod 3) n̄3 ≡ 6−1 (mod 7)
n̄1 = 1 n̄2 = 2 n̄3 = 6

Use the Chiniese Remainer Theorem to compute x = a1n1n̄1 + a2n2n̄2 + a3n3n̄3. This
gives x = (0)(21)(1) + (1)(14)(2) + (6)(6)(6) = 244. The solution to the system of
congruences is x ≡ 244 ≡ 34 (mod 42).

Polynomial Equations Modulo n

Theorem 4: Legendre. If f(x) = adx
d + ad−1x

d−1 + ...a0 is a polynomial of degree d > 0
where p ∤ ad, then f(x) ≡ 0 (mod p) has at most d solutions.
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