MATH 565 Spring 2019 - Class Notes

3/13/19

Scribe: Michelle Tarr

Summary: This class covered how to solve linear equations modulo n using inverses and how to solve systems of concurrences with the Chinese Remainder Theorem.

Solving Linear Equations Modulo n

Consider $ax \equiv b \pmod{n}$

- How can we find a solution to this equation without trying every possible value of x?
- If $ax \equiv b \pmod{n}$, then $n \mid (b ax)$ for some integer k, so b ax = nk.
- We are looking for values of k and x that satisfy the equation b = nk + ax.
- Through previous investigation with the Euclidean Algorithm, we know that equations of the form b = nk + ax have a solution if and only if $gcd(a, n) \mid b$.

Theorem 1. The equation $ax \equiv b \pmod{n}$ has a solution if and only if $gcd(a, n) \mid b$. The solution to the equation is unique if and only if gcd(a, n) = 1

Example 1: Solve $3x \equiv 5 \pmod{6}$ Note that gcd(3, 6) = 3 and $3 \nmid 5$. Thus this equation has no solution.

Example 2: Solve $3x \equiv 12 \pmod{6}$

Note that gcd(3,6) = 3 and $3 \mid 12$. Thus this equation has solutions, but they are not unique since $gcd(3,6) \neq 1$.

 $x \equiv 2 \pmod{6} \text{ since } 3(2) \equiv 6 \equiv 12 \pmod{6}$ $x \equiv 4 \pmod{6} \text{ since } 3(4) \equiv 12 \pmod{6}$ $x \equiv 6 \pmod{6} \text{ since } 3(6) \equiv 18 \equiv 12 \pmod{6}$

Example 3: Solve $5x \equiv 2 \pmod{6}$

Note that gcd(5,6) = 1. Thus this equation has a solution and it is unique.

x	$5x \pmod{6}$	
0	$0 \pmod{6}$	
1	$5 \pmod{6}$	
2	$10 \equiv 4 \pmod{6}$	
3	$15 \equiv 3 \pmod{6}$	
4	$20 \equiv 2 \pmod{6}$	
5	$25 \equiv 1 \pmod{6}$	

Thus $x \equiv 4 \pmod{6}$ is the one unique solution.

Definition: If $a \cdot \bar{a} \equiv 1 \pmod{n}$ we say that \bar{a} is the inverse of a modulo n.

Example 4: $3 \cdot 4 \equiv 12 \equiv 1 \pmod{11}$, so 4 is the inverse of 3 modulo 11.

Theorem 2. If gcd(a, n) = 1, then a has a unique inverse modulo n.

Proof. To find the inverse of a we are trying to solve the equation $ax \equiv 1 \pmod{n}$. By our previous theorem we know this equation has a solution if $gcd(a, n) \mid 1$. Since gcd(a, n) = 1, the inverse exists and is unique.

Example 5: Find the inverse of 5 (mod 21).

In order to find the inverse, we must solve the congruence $5x \equiv 1 \pmod{21}$, which means finding x and y such that 5x + 21y = 1. This can be done using the Euclidean Algorithm:

$$21 = 4(5) + 1 5 = 5(1) + 0 1 = 1(21) - 4(5)$$

Thus, $x \equiv -4 \equiv 17 \pmod{21}$ is the inverse of 5 modulo 21.

How to Solve A Linear Congruence:

Consider $ax \equiv b \pmod{n}$

- We can not divide by a in modular arithmetic so how can we cancel out a in order to find a solution for x?
- We can use inverses and multiply both sides of the congruence by the inverse of a, \bar{a} .

Example 6: Solve $5x \equiv 12 \pmod{21}$.

We know that the inverse of 5 modulo 21 is 17, so to solve for x we must multiply by 17 on both sides.

$$5x \equiv 12 \pmod{21}$$

$$17(5x) \equiv 17(12) \pmod{21}$$

$$1x \equiv 204 \equiv -6 \equiv 15 \pmod{21}$$

$$x \equiv 15 \pmod{21}$$

Systems of Congruences

- If $a \equiv b \pmod{n}$, then $n \mid (b a)$.
- Any factor of n also divides b-a as well
- We can write congruences in the modulo of each of these factors to create a system of congruences.

Example 7: Consider $x \equiv 11 \pmod{42}$, which means $42 \mid (11 - x)$. Since $42 = 2 \cdot 3 \cdot 7$, we know $2 \mid (11 - x)$, $3 \mid (11 - x)$, and $7 \mid (11 - x)$.

> $x \equiv 11 \equiv 1 \pmod{2}$ $x \equiv 11 \equiv 2 \pmod{3}$ $x \equiv 11 \equiv 4 \pmod{7}$

• Can we go the other way and find one solution that works for a system of congruences simultaneously?

Theorem 3: Chinese Remainder Theorem. If integers $m_1, m_2, ..., m_k$ are all pairwise coprime, so that the gcd of any pair is 1, then any set of equations:

```
x \equiv a_1 \pmod{m_1}x \equiv a_2 \pmod{m_2}\vdotsx \equiv a_k \pmod{m_k}
```

has a unique solution modulo $M = m_1 \cdot m_2 \cdot ... m_k$

Proof. Suppose $m_1, m_2, ..., m_k$ are pairwise coprime integers. Let $M = m_1 \cdot m_2 \cdot ..., m_k$ be their product. Let $n_i = \frac{M}{m_i}$ be the product of all the values except m_i . Note that $gcd(n_i, m_i) = 1$ since n_i is the product of numbers that are all coprime with m_i . Thus, each n_i has an inverse $\bar{n}_i \pmod{m_i}$. Compute $x = a_1 n_1 \bar{n}_1 + a_2 n_2 \bar{n}_2 + ... a_k n_k \bar{n}_k$.

Consider $x \equiv a_1 n_1 \bar{n}_1 + a_2 n_2 \bar{n}_2 + \dots a_k n_k \bar{n}_k \pmod{m_j}$. Since $m_j \mid n_i$ for all $i \neq j$, we know that $a_i n_i \bar{n}_i \equiv 0 \pmod{m_j}$ for all $i \neq j$. This means $x \equiv a_j n_j \bar{n}_j \pmod{m_j}$. In addition, $n_j \bar{n}_j \equiv 1 \pmod{m_j}$ because \bar{n}_j is the inverse of n_j modulo j. Thus $x \equiv a_j \pmod{m_j}$.

Therefore, x satisfies all the individual congruences $x \equiv a_i \pmod{m_i}$ simultaneously. \Box

Example 8: Chinese Remainder Theorem: Find x such that

$$x \equiv 0 \pmod{2}$$
$$x \equiv 1 \pmod{3}$$
$$x \equiv 6 \pmod{7}$$

Note that 2, 3, and 7 are all pairwise coprime and that $M = 2 \cdot 3 \cdot 7 = 42$.

$a_1 = 0$	$a_2 = 1$	$a_3 = 6$
$m_1 = 2$	$m_2 = 3$	$m_3 = 7$
$n_1 = 3 \cdot 7 = 21$	$n_2 = 2 \cdot 7 = 14$	$n_3 = 2 \cdot 3 = 6$
$\bar{n}_1 \equiv 21^{-1} \pmod{2}$	$\bar{n}_2 \equiv 14^{-1} \pmod{3}$	$\bar{n}_3 \equiv 6^{-1} \pmod{7}$
$\bar{n}_1 = 1$	$\bar{n}_2 = 2$	$\bar{n}_3 = 6$

Use the Chiniese Remainer Theorem to compute $x = a_1n_1\bar{n}_1 + a_2n_2\bar{n}_2 + a_3n_3\bar{n}_3$. This gives x = (0)(21)(1) + (1)(14)(2) + (6)(6)(6) = 244. The solution to the system of congruences is $x \equiv 244 \equiv 34 \pmod{42}$.

Polynomial Equations Modulo n

Theorem 4: Legendre. If $f(x) = a_d x^d + a_{d-1} x^{d-1} + ... a_0$ is a polynomial of degree d > 0where $p \nmid a_d$, then $f(x) \equiv 0 \pmod{p}$ has at most d solutions.