
MATH 565 Spring 2019 - Class Notes

4/25/19

Scribe: Elizabeth Congedo

Summary: This lecture focused on Chapter 8 in the textbook. We covered elementary
properties of π(x) as well as Chebyshev’s Theorem.

Task 36: Proof of Euler’s Observation

Proof. Suppose n + 1 is prime p = n + 1, p - a and p - b. Want to prove that p = n + 1
divides an − bn = ap−1 − bp−1.
Using Fermat’s Little Theorem:

an ≡ ap−1 ≡ 1 (mod p)

bn ≡ bp−1 ≡ 1 (mod p)

so an − bn ≡ ap−1 − bp−1 ≡ 1− 1 ≡ 0 (mod p)

Thus p divides an − bn .

”How many prime numbers are there?”

π(x) = #{p ≤ x | p is prime}
π(x) =

∑
p≤x

1

Example 1: π(10) = 4; 2, 3, 5, 7

Example 2: π(11) = 5; 2, 3, 5, 7, 11

Example 3: π(11.7) = 5; 2, 3, 5, 7, 11
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How is the function π(x) growing?

Figure 1. The number of primes less than or equal to π(x).

Theorem 8-1:

lim
x→∞

π(x) =∞ that is, there are infinitely many primes.

Proof. Take any list of prime numbers p1, p2, · · · , pk.
Let n = p1 · p2, ·p3 · · · · · pk.
Now consider n + 1

It is not divisible by any of p1, p2, · · · , pk so by the Fundamental Theorem of Arithmetic,
since n + 1 factors into primes, there has to be a prime not in this list.
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Theorem 8-2:

π(x)
x < phi(k)

k + 2k
k for any integer k.

Proof. Write x = k`+ r where ` =
⌊x
k

⌋
and r < k.

Figure 2. π(x) counts the prime numbers to x.

In the first interval from 1 to k there are k integers so there can’t be more than k prime
numbers. Now in every other interval, of length k, there are φ(k) many integers coprime to
k so there are at most φ(k) primes.

In the last remainder of size r, there are at most r < k primes:

π(x) ≤ (k) + (`− 1)φ(k) + r

π(x)
x
≤ k

x
+ (`−1)

x
φ(k) + r

x

π(x)
x
≤ k

x
+ φ(k)

x
+ k

x

π(x)
x
≤ φ(k)

x
+ 2k

x
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Theorem 8-3:

M∑
n=1

1
n <

∏
p<M

(
1

1− 1
p

)
Equivalently, if p1, p2, · · · , pk are the primes less than M, then

M∑
n=1

1
n <

(
1

1− 1
p1

)(
1

1− 1
p2

)
· · ·
(

1
1− 1

pk

)

Proof. Note that if n < M , then all of the prime divisors of n are less than M. Now consider
1− 1

p
= 1 + 1

p
+ 1

p2
+ 1

p3
+ · · ·∏

p<M

(
1− 1

p

)
=

(
1

1− 1
p1

)(
1

1− 1
p2

)
· · ·

(
1

1− 1
pk

)

=
(

1 + 1
p1

+ 1
p2

+ · · ·
)(

1 + 1
p2

+ 1
p22

+ · · ·
)
· · ·
(

1 + 1
pk

+ 1
pk2

+ · · ·
)

When you foil this out, you get every term that looks like 1
p1k1 p2k2 p3k3 ···

Since every integer n < M shows up as a denominator in this foiled out
product,

M∑
n=1

1
n <

∏
p<M

(
1

1− 1
p

)

Example 4: Try this with M = 6
6∑

n=1

1

n
=

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6

= 1
1 + 1

2 + 1
3 + 1

4 + 1
5 + 1

2·3 claim this is less than

∏
p<6

(
1

1− p

)
=

(
1

1− 1
2

)(
1

a− 1
3

)(
1

1− 1
5

)
=
(
1 + 1

2 + 1
8 + 1

4 + · · ·
) (

1 + 1
3 + 1

9 + · · ·
) (

1 + 1
5 + · · ·

)
= 1 + 1

2 + 1
4 + 1

8 + 1
3 + 1

2

(
1
3

)
+ 1

4

(
1
3

)
+ · · ·+ 1

5 + 1
2

(
1
5

)
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Theorem 8-4:

lim
x→∞

π(x)

x
= 0 Goal: Prove that pi(x)

x < ε for any ε < 0.

Proof. We know
pi(x)
x ≤

φ(k)
k + 2k

x . If we pick p1 · p2 · . . . · p`,
φ(k) = φ(p1)φ(p2) · · ·φ(p`)

= (p1 − 1) (p2 − 1) (p3 − 1) · · · (p` − 1)

φ(k)
k = (p1−1)(p2−1)(p3−1)···(p`−1)

p1·p2·...·p`

=
p1

(
1− 1

p1

)
p2

(
1− 1

p2

)
···p`

(
1− 1

p`

)
p1·p2·...·p`

=
(

1− 1
p1

)(
1− 1

p2

)
· · ·
(

1− 1
p`

)
If p1p2 · · · p` are the primes less than M,

then
φ(k)
k =

∏
p<M

(
1− 1

p

)
<

(
M∑
n=1

1

n

)−1
M∑
n=1

1

n
<
∏
p<M

(
1− 1

p

)
(

M∑
n=1

1

n

)−1
>
∏
p<M

(
1− 1

p

)

By picking M to be big enough, we can make

(
M∑
n=1

1

n

)−1
< ε

2 for any ε

If we take k = p1p2 · p`, where p` is large enough so this term is less than ε
2 ,

then
phi(k)
k < ε

2 .
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π(x)
x < φ(k)

k + 2k
x

φ(x)
x < ε

2 + 2k
x for any x.

Suppose x > 4
εp1p2 · · · p`,

then
π(x)
x < ε

2 + 2p1p2···p`
4
εp1p2···p`

π(x)
x < ε

2 + ε
2

π(x)
x < ε

Note: Theorem 8-4 tells us that the proportion of integers that are prime tends to be 0,
thus 0% of integers are prime.

Prime Number Theorem

lim
x→

π(x)
x

log(x)

= 1; where π(x) ≈ x
log(x)

Proof. Involves Complex Analysis (Hard Proof - not shown)
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Chebyshev’s Theorem:

There exist positive constants c1 and c2, where c1x
logx < π(x) < c2x

logx
Note: (log = ln = loge)

Facts that we need:

• 0 ≤ b2xc − bxc ≤ 1 [Theorem 8-5]

• f(x) = x
logx then f(x) is increasing if x > e and f(x− 2) > 1

2f(x)

• The exponent of the prime p in n! is equal to

∞∑
i=1

⌊
n

pi

⌋
n! = 1 · 2 · 3 · . . . · (n− 1)n

The number of these integers divisible by p is

⌊
n
p

⌋
.

The number divisible by p2 is

⌊
n
p2

⌋
.

Example 5: What is the exponent on 3 in 11!?

11! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11

4 =
∞∑
i=1

⌊
11

3i

⌋
=

⌊
11

3

⌋
+

⌊
11

9

⌋
+

⌊
11

27

⌋
= 3 + 1

= 4
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Proof. (Lower Bound for Chebyshev’s Theorem)

Consider
(
2n
n

)
= (2n)!

n!n!

= 2n(2n−1)···(n+1)
n(n−1)···1

We know
(
2n
n

)
is an integer.

If p is a prime between n and 2n, then p appears only in the numerator so p |
(
2n
n

)
If we take any prime p < 2n, let rp be the largest power of p less than 2n.

prp ≤ 2n < prp+1 Example 6: If n = 5, 2n = 10, what is r3?

r3 = 2 32 ≤ 10 < 32+1

What is the power of p in
(
2n
n

)
= (2n)!

n!n! ?

Using our formula for factorials this power is:

∞∑
i=1

⌊
2n

pi

⌋
− 2

∞∑
i=1

⌊
n

pi

⌋

=
∞∑
i=1

(⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋)

=

rp∑
i=1

(⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋)
≤

rp∑
i=1

1 = rp Note: (b2xc − 2 bxc) ≤ 1

prp is the biggest power of p that could show up in
(
2n
n

)
.

Let Qn =
∏
p<2n

prp so
(
2n
n

)
| Qn

Since prp ≤ 2n and there are π(2n) many primes in the product for Qn, then

Qn ≤ (2n)π(2n).

So,
(
2n
n

)
≤ (2n)π(2n)
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(
2n
n

)
= 2n(2n−1)(2n−2)···(n+1)

n(n−1)(n−2)···1

=
(
2n
n

) (
2n−1
n−1
)
· · ·
(
n+1
1

)
> (2)(2)(2) · . . . · 2(

2n
n

)
> 2n

So, 2n <
(
2n
n

)
≤ (2n)π(2n)

2n ≤ (2n)π(2n)

log(2n) ≤ log
(
(2n)π(2n)

)
nlog2 ≤ π(2n)log(2n)

So,
nlog2
2n ≤ π(2n) Note: Lower End of Chebyshev’s Theorem c1k

logx < π(x)
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