MATH 565 Spring 2019 - Class Notes

4/25/19
Scribe: Elizabeth Congedo

Summary: This lecture focused on Chapter 8 in the textbook. We covered elementary properties of $\pi(x)$ as well as Chebyshev's Theorem.

Task 36: Proof of Euler's Observation

Proof. Suppose $n+1$ is prime $p=n+1, p \nmid a$ and $p \nmid b$. Want to prove that $p=n+1$ divides $a^{n}-b^{n}=a^{p-1}-b^{p-1}$.
Using Fermat's Little Theorem:

$$
\begin{aligned}
& a^{n} \equiv a^{p-1} \equiv 1(\bmod p) \\
& b^{n} \equiv b^{p-1} \equiv 1(\bmod p) \\
& \text { so } a^{n}-b^{n} \equiv a^{p-1}-b^{p-1} \equiv 1-1 \equiv 0(\bmod p)
\end{aligned}
$$

Thus p divides $a^{n}-b^{n}$.

"How many prime numbers are there?"

$$
\begin{aligned}
& \pi(x)=\#\{p \leq x \mid p \text { is prime }\} \\
& \pi(x)=\sum_{p \leq x} 1
\end{aligned}
$$

Example 1: $\pi(10)=4 ; \quad 2,3,5,7$
Example 2: $\pi(11)=5 ; \quad 2,3,5,7,11$
Example 3: $\pi(11.7)=5 ; \quad 2,3,5,7,11$

How is the function $\pi(x)$ growing?

Figure 1. The number of primes less than or equal to $\pi(x)$.

Theorem 8-1:

$\lim _{x \rightarrow \infty} \pi(x)=\infty$ that is, there are infinitely many primes.

Proof. Take any list of prime numbers $\mathrm{p}_{1}, p_{2}, \cdots, p_{k}$.
Let $\mathrm{n}=\mathrm{p}_{1} \cdot p_{2}, \cdot p_{3} \cdots \cdot p_{k}$.
Now consider $\mathrm{n}+1$
It is not divisible by any of $p_{1}, p_{2}, \cdots, p_{k}$ so by the Fundamental Theorem of Arithmetic, since $\mathrm{n}+1$ factors into primes, there has to be a prime not in this list.

Theorem 8-2:

$\frac{\pi(x)}{x}<\frac{p h i(k)}{k}+\frac{2 k}{k}$ for any integer k .

Proof. Write $x=k \ell+r$ where $\ell=\left\lfloor\frac{x}{k}\right\rfloor$ and $r<k$.

Figure 2. $\pi(x)$ counts the prime numbers to x .

In the first interval from 1 to k there are k integers so there can't be more than k prime numbers. Now in every other interval, of length k , there are $\phi(k)$ many integers coprime to k so there are at most $\phi(k)$ primes.
In the last remainder of size r , there are at most $r<k$ primes:
$\pi(x) \leq(k)+(\ell-1) \phi(k)+r$
$\frac{\pi(x)}{x} \leq \frac{k}{x}+\frac{(\ell-1)}{x} \phi(k)+\frac{r}{x}$
$\frac{\pi(x)}{x} \leq \frac{k}{x}+\frac{\phi(k)}{x}+\frac{k}{x}$
$\frac{\pi(x)}{x} \leq \frac{\phi(k)}{x}+\frac{2 k}{x}$

Theorem 8-3:

$\sum_{n=1}^{M} \frac{1}{n}<\prod_{p<M}\left(\frac{1}{1-\frac{1}{p}}\right)$
Equivalently, if $p_{1}, p_{2}, \cdots, \mathrm{p}_{k}$ are the primes less than M , then $\sum_{n=1}^{M} \frac{1}{n}<\left(\frac{1}{1-\frac{1}{p_{1}}}\right)\left(\frac{1}{1-\frac{1}{p_{2}}}\right) \cdots\left(\frac{1}{1-\frac{1}{p_{k}}}\right)$

Proof. Note that if $n<M$, then all of the prime divisors of n are less than M. Now consider $1-\frac{1}{p}=1+\frac{1}{p}+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots$
$\prod_{p<M}\left(1-\frac{1}{p}\right)=\left(\frac{1}{1-\frac{1}{p_{1}}}\right)\left(\frac{1}{1-\frac{1}{p_{2}}}\right) \cdots\left(\frac{1}{1-\frac{1}{p_{k}}}\right)$
$=\left(1+\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots\right)\left(1+\frac{1}{p_{2}}+\frac{1}{p_{2}{ }^{2}}+\cdots\right) \cdots\left(1+\frac{1}{p_{k}}+\frac{1}{p_{k}{ }^{2}}+\cdots\right)$
When you foil this out, you get every term that looks like $\frac{1}{p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} p_{3}{ }^{k_{3} \ldots}}$
Since every integer $n<M$ shows up as a denominator in this foiled out product,

$$
\sum_{n=1}^{M} \frac{1}{n}<\prod_{p<M}\left(\frac{1}{1-\frac{1}{p}}\right)
$$

Example 4: Try this with $M=6$

$$
\begin{aligned}
& \begin{aligned}
& \sum_{n=1}^{6} \frac{1}{n}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6} \\
&= \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{2 \cdot 3} \quad \text { claim this is less than } \\
& \prod_{p<6}\left(\frac{1}{1-p}\right)=\left(\frac{1}{1-\frac{1}{2}}\right)\left(\frac{1}{a-\frac{1}{3}}\right)\left(\frac{1}{1-\frac{1}{5}}\right) \\
&=\left(1+\frac{1}{2}+\frac{1}{8}+\frac{1}{4}+\cdots\right)\left(1+\frac{1}{3}+\frac{1}{9}+\cdots\right)\left(1+\frac{1}{5}+\cdots\right) \\
&=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{3}+\frac{1}{2}\left(\frac{1}{3}\right)+\frac{1}{4}\left(\frac{1}{3}\right)+\cdots+\frac{1}{5}+\frac{1}{2}\left(\frac{1}{5}\right)
\end{aligned}
\end{aligned}
$$

Theorem 8-4:

$\lim _{x \rightarrow \infty} \frac{\pi(x)}{x}=0 \quad$ Goal: Prove that $\frac{p i(x)}{x}<\epsilon$ for any $\epsilon<0$.

Proof. We know $\frac{p i(x)}{x} \leq \frac{\phi(k)}{k}+\frac{2 k}{x}$. If we pick $p_{1} \cdot p_{2} \cdot \ldots \cdot p_{\ell}$,

$$
\begin{aligned}
\phi(k) & =\phi\left(p_{1}\right) \phi\left(p_{2}\right) \cdots \phi\left(p_{\ell}\right) \\
& =\left(p_{1}-1\right)\left(p_{2}-1\right)\left(p_{3}-1\right) \cdots\left(p_{\ell}-1\right)
\end{aligned}
$$

$$
\frac{\phi(k)}{k}=\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)\left(p_{3}-1\right) \cdots\left(p_{\ell}-1\right)}{p_{1} \cdot p_{2} \cdots \cdot p_{\ell}}
$$

$$
=\frac{p_{1}\left(1-\frac{1}{p_{1}}\right) p_{2}\left(1-\frac{1}{p_{2}}\right) \cdots p_{\ell}\left(1-\frac{1}{p_{\ell}}\right)}{p_{1} \cdot p_{2} \cdots \cdot p_{\ell}}
$$

$$
=\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{\ell}}\right)
$$

If $p_{1} p_{2} \cdots p_{\ell}$ are the primes less than M ,
then $\quad \frac{\phi(k)}{k}=\prod_{p<M}\left(1-\frac{1}{p}\right)<\left(\sum_{n=1}^{M} \frac{1}{n}\right)^{-1}$

$$
\begin{array}{r}
\sum_{n=1}^{M} \frac{1}{n}<\prod_{p<M}\left(1-\frac{1}{p}\right) \\
\left(\sum_{n=1}^{M} \frac{1}{n}\right)^{-1}>\prod_{p<M}\left(1-\frac{1}{p}\right)
\end{array}
$$

By picking M to be big enough, we can make $\left(\sum_{n=1}^{M} \frac{1}{n}\right)^{-1}<\frac{\epsilon}{2}$ for any ϵ
If we take $k=p_{1} p_{2} \cdot p_{\ell}$, where p_{ℓ} is large enough so this term is less than $\frac{\epsilon}{2}$, then $\frac{p h i(k)}{k}<\frac{\epsilon}{2}$.

$$
\begin{aligned}
& \frac{\pi(x)}{x}<\frac{\phi(k)}{k}+\frac{2 k}{x} \\
& \frac{\phi(x)}{x}<\frac{\epsilon}{2}+\frac{2 k}{x} \text { for any x. }
\end{aligned}
$$

Suppose $x>\frac{4}{\epsilon} p_{1} p_{2} \cdots p_{\ell}$,

$$
\text { then } \begin{aligned}
\frac{\pi(x)}{x} & <\frac{\epsilon}{2}+\frac{2 p_{1} p_{2} \cdots p_{\ell}}{\frac{4}{\epsilon} p_{1} p_{2} \cdots p_{\ell}} \\
\frac{\pi(x)}{x} & <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
\frac{\pi(x)}{x} & <\epsilon
\end{aligned}
$$

Note: Theorem 8-4 tells us that the proportion of integers that are prime tends to be 0 , thus 0% of integers are prime.

Prime Number Theorem

$\lim _{x \rightarrow} \frac{\pi(x)}{\frac{x}{\log (x)}}=1 ; \quad$ where $\pi(x) \approx \frac{x}{\log (x)}$

Proof. Involves Complex Analysis (Hard Proof - not shown)

Chebyshev's Theorem:

There exist positive constants c_{1} and c_{2}, where $\frac{c_{1} x}{\log x}<\pi(x)<\frac{c_{2} x}{\log x}$ Note: $\left(\log =\ln =l o g_{e}\right)$

Facts that we need:

- $0 \leq\lfloor 2 x\rfloor-\lfloor x\rfloor \leq 1 \quad$ [Theorem 8-5]
- $f(x)=\frac{x}{\log x}$ then $\mathrm{f}(\mathrm{x})$ is increasing if $x>e$ and $f(x-2)>\frac{1}{2} f(x)$
- The exponent of the prime p in n ! is equal to $\sum_{i=1}^{\infty}\left\lfloor\frac{n}{p_{i}}\right\rfloor$ $n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n-1) n$
The number of these integers divisible by p is $\left\lfloor\frac{n}{p}\right\rfloor$.
The number divisible by p^{2} is $\left\lfloor\frac{n}{p^{2}}\right\rfloor$.

Example 5: What is the exponent on 3 in $11!?$
$11!=1 \cdot 2 \cdot \underline{3} \cdot 4 \cdot 5 \cdot \underline{6} \cdot 7 \cdot 8 \cdot \underline{9} \cdot 10 \cdot 11$

$$
\begin{aligned}
4=\sum_{i=1}^{\infty}\left\lfloor\frac{11}{3^{i}}\right\rfloor & =\left\lfloor\frac{11}{3}\right\rfloor+\left\lfloor\frac{11}{9}\right\rfloor+\left\lfloor\frac{11}{27}\right\rfloor \\
& =3+1 \\
& =4
\end{aligned}
$$

Proof. (Lower Bound for Chebyshev's Theorem)
Consider $\binom{2 n}{n}=\frac{(2 n)!}{n!n!}$

$$
=\frac{2 n(2 n-1) \cdots(n+1)}{n(n-1) \cdots 1}
$$

We know $\binom{2 n}{n}$ is an integer.
If p is a prime between n and 2 n , then p appears only in the numerator so $p \left\lvert\,\binom{ 2 n}{n}\right.$ If we take any prime $p<2 n$, let r_{p} be the largest power of p less than 2 n .
$p^{r_{p}} \leq 2 n<p^{r_{p}+1}$
Example 6: If $\mathrm{n}=5,2 \mathrm{n}=10$, what is r_{3} ?

$$
r_{3}=2 \quad 3^{2} \leq 10<3^{2+1}
$$

What is the power of p in $\binom{2 n}{n}=\frac{(2 n)!}{n!n!}$?
Using our formula for factorials this power is:
$\sum_{i=1}^{\infty}\left\lfloor\frac{2 n}{p_{i}}\right\rfloor-2 \sum_{i=1}^{\infty}\left\lfloor\frac{n}{p_{i}}\right\rfloor$
$=\sum_{i=1}^{\infty}\left(\left\lfloor\frac{2 n}{p_{i}}\right\rfloor-2\left\lfloor\frac{n}{p_{i}}\right\rfloor\right)$
$=\sum_{i=1}^{r_{p}}\left(\left\lfloor\frac{2 n}{p_{i}}\right\rfloor-2\left\lfloor\frac{n}{p_{i}}\right\rfloor\right) \leq \sum_{i=1}^{r_{p}} 1=r^{p} \quad$ Note: $(\lfloor 2 x\rfloor-2\lfloor x\rfloor) \leq 1$
$p^{r_{p}}$ is the biggest power of p that could show up in $\binom{2 n}{n}$.
Let $Q_{n}=\prod_{p<2 n} p^{r_{p}}$ so $\left.\binom{2 n}{n} \right\rvert\, Q_{n}$
Since $p^{r_{p}} \leq 2 n$ and there are $\pi(2 n)$ many primes in the product for Q_{n}, then $Q_{n} \leq(2 n)^{\pi(2 n)}$.

So, $\binom{2 n}{n} \leq(2 n)^{\pi(2 n)}$

$$
\begin{aligned}
\binom{2 n}{n} & =\frac{2 n(2 n-1)(2 n-2) \cdots(n+1)}{n(n-1)(n-2) \cdots 1} \\
& =\left(\frac{2 n}{n}\right)\left(\frac{2 n-1}{n-1}\right) \cdots\left(\frac{n+1}{1}\right) \\
& >(2)(2)(2) \cdot \ldots \cdot 2 \\
\binom{2 n}{n} & >2^{n}
\end{aligned}
$$

$$
\text { So, } 2^{n}<\binom{2 n}{n} \leq(2 n)^{\pi(2 n)}
$$

$$
2^{n} \leq(2 n)^{\pi(2 n)}
$$

$$
\log \left(2^{n}\right) \leq \log \left((2 n)^{\pi(2 n)}\right)
$$

$$
n \log 2 \leq \pi(2 n) \log (2 n)
$$

$$
\text { So, } \frac{n \log 2}{2 n} \leq \pi(2 n)
$$

Note: Lower End of Chebyshev's Theorem $\frac{c_{1} k}{\log x}<\pi(x)$

Works Cited

Caldwell, C. K. (n.d.). How Many Primes Are There? Retrieved April 28, 2019, from https://primes.utm.edu/howmany.html

