MATH 656- Spring 2019 Class Notes

Scribe: Carolyn Rogers
April 10, 2019

April 15, 2019

1 Euler Tasks:

Task 29: 211 — 1 = 2047 = 23 x 89
L NOT prime

Conjecture 1: There are infinitely many primes where 2p+1 is also prime. (Sophie Germain
Primes)

Conjecture 2: There are infinitely many primes where 2P — 1is prime. (Mersenne Primes)

Conjecture 3: There are infinitely many n with 22" + 1 primes. (Fermat Primes)

* No one knows a proof of any of these conjectures.*

2 Task:

Create a table of exponents (mod 11).

Exponents
at 1 2 3 4 5 E 7 E 9 10 [modi1l)
2 4 8 & 1w 9 7 i B 1
3 8 5 4 1 i 9 5 4 1
4 5 3 3 1 4 5 g 3 1
5 i a4 9 1 5 3 4 9 1
§ & 3 7 g 1w 5 B 4 2 1
7 5 2 i W 4 6 g =B 1
&8 9 & 4 1w 3 2 5 7 1
g 4 3 5 1 g 4 I 5 1
iy @ 1 1w 1 W 1 W 1 W 1

Observations:

e when k=10 (p — 1) , a* = 1(mod 11).
L aP~! = 1(mod p).— Fermat’s Little Theorem

e a=2,6,7,8 "don’t repeat”. All the values are unique.

ool 1 a=3450
=) 10 a=2,6,7,8,10



10k = 1 k=0(mod 2)
o 10 (k=1 (mod 2)

1,3,4,5, and 9 are the only numbers that appear when the base is not 2,6, 7,and 8.

e Once we encounter a 1, the row repeats.

In the even columns, the numbers are ”symmetric” if the columns were flipped between 5
and 6.

*1t is useful to know what power of something gives us 1 (mod_)*

3 Chapter 7

Book Definition: a belongs to the exponent h(mod m), if a® = 1(mod m) and h is the least
exponent this is true.

Example:

e 2 belongs to the exponent 10(mod 11)

e 3 belongs to the exponent 5(mod 11)

L, We're going to call this the order of a(mod m).

e The order of 2(mod 11) is 10.

e The order of 3(mod 11) is 5.
We write this as ord,,(a)
[ ] 07“d11(2) =10 N 07“d11(3) =5 N 0Td11(10) = 2.

Theorem 1: If the ord,,(a) = h and a" = 1(mod m), then h|r.

Proof. Write r = hk + s, (division with remainder), where s < h.
Then, 1 = a” = a5 (mod m)

a" . a®(mod m)

(a™)* - a®(mod m)

=1-a*(mod m)

So, a® = 1(mod m)

s <h.So,s=0

Therefore, h|r.



Corollary 1: Since a?(™ = 1(mod m). If ged(a,m) = 1. We have that the ord,,(a)|p(m), if
gcd(a,m) = 1.

Example: ¢(11) = 10, so the order of every element should divide 10. ord;;(2) = 10,
ordi1(3) =5, ordy1(10) = 2 — all divide 10 v/

Definition: a is a primitive root (mod m) if ord,,(a) = p(m).
Example: The primitive roots mod 11 are 2, 6, 7, 8.

Example: m =8

If ged(a,8) # 1, then a* = 1(mod 8) isn’t possible.
L Only possibilities are 1, 3, 5, 7.

32 = 1(mod 8), ords(3) = 2 = ordg(5) = ords(7)

52 = 25 = 1(mod 8)

72 = 49 = 1(mod 8)

Since ¢(8) = 4, 8 has no primitive roots.

3

Theorem 2: If a is a primitive root (mod m), then a', a?, a®, ..., a?™) are mutually in-congruent

and form a reduced residue system (mod m).

Proof. (By contradiction)
Suppose there exists 1 <r < s < p(m) , with a” = a*(mod m),
then, a” = a"(a®*")(mod m)
1 =a*"(mod m)
So, s —r>0and s —r < ¢(m), but a®*" = (mod m). This contradicts ¢(m)
being the order of a(mod m).

s

Theorem 3: If the ord,,(a) = h and gcd(h, k) = d, then ord,,(a*) =

Example: ord;;(2) =10=h
Let k=6
gcd(10,6) = 2
07“d11<26) = 07‘d11(9) = % =5V
#26 = 9(mod 11)

Proof. Write j = ord,,(a*)
(goal: prove that j = % = hy)
Write: h1 = % y kjl g
Since j = ord,(a")
1 = (a*) = a™ (mod m)
Since ord,,(a) = hy , we know hl|kj .
Then, hj|k1j (divided out the ged from each)
and ged(hi, k1) = 1. So, hilj.

>
=

= "M (mod m)
a*"d(mod m)
a1 (mod m)
(a™)*1 (mod m)
1(mod m)

Now, compute (a”)



So, (a®)" = 1(mod m)
So, ordm,(a¥)|hy. Thus, j|h;
So, j = h1 = ordy,(a") = %
O

Corollary 2: If g is a primitive root (mod m), then g" is a primitive root (mod m) if and only
if ged(r, p(m)) = 1.

Proof. The order of g" = T d?:i:‘d(i)(g)) = gcdfr(‘:;zm)

This equals ¢(m) exactly when ged(r, p(m)) = 1.
O

Example: If g is a primitive root (mod 11), then ¢" is a primitive root (mod 11).
If ged(r,10) = 1, then r = 1,3,7,9. Try this with g = 2...

2B =8v

=7V

29=6v

8,7 and 6 are all primitive roots.

Corollary 3: If m has a primitive root, then it has ¢(@(m)) primitive roots.

Proof. If g is a primitive root, then ¢" is a primitive root whenever ged(r, p(m)) = 1.
The number of such things is ¢(@(m)).

Example: ¢(p(11)) = ¢(10) = ¢(2)¢(5) =1- 4.
So, 11 has 4 primitive roots.

When do we have at least one primitive root?
L Answer: m has a primitive root if and only if m is a prime or twice a prime.

Theorem 4: Every prime has a primitive root.

Proof. Let p be a prime. Then ord,(a)|p — 1. Let N(h) = #{a(mod p)|ordy(a) = h}
(count the number of residues (mod p), with ord,(a) = h)

Example: If p =11

Now, Xp 1 N(h) =p—1
Goal: prove N(p — 1) # 0 (Then has a primitive root)
Claim that N(h) is either 0 or ¢(h). If it’s not zero, then at least one thing has order h, call it
b.
b" = 1(mod p).
Now, consider 2" = 1 (mod p)
" —1 =0 (mod p)



This polynomial has at most h distinct roots. b', b2, 5%, ..., b" all satisfy this equation because
(Y —1= () -1
=1-—1=0(mod p).
So, these are all of the solutions to this equation.
How many of these have order h?
b’ has order h iff ged(i, h) = 1.
So, there are ¢(h) many such i.
N(h) =0 or ¢(h)
Now, p — 1 = ¥y,_1 N(h)
If N(h) < @(h), then p—1 =¥, 1 N(h) < Epp_19p(h) =p—1
Recall: ¥gj,¢(d) = n — Contradiction!
So, N(h) = ¢(h) (ALWAYS!)
Np—-1)=¢(p-1)and p(p—1) > 1.
So, p has at least one element of order p — 1.
So, p has a primitive root.
(In fact it has ¢(p — 1) many.)



