MATH 656- Spring 2019 Class Notes

Scribe: Carolyn Rogers April 10, 2019

April 15, 2019

1 Euler Tasks:

Task 29: $2^{11} - 1 = 2047 = 23 * 89$ \downarrow NOT prime

Conjecture 1: There are infinitely many primes where 2p+1 is also prime. (Sophie Germain Primes)

Conjecture 2: There are infinitely many primes where $2^p - 1$ is prime. (Mersenne Primes)

Conjecture 3: There are infinitely many n with $2^{2^n} + 1$ primes. (Fermat Primes)

* No one knows a proof of any of these conjectures.*

2 Task:

Create a table of exponents (mod 11).

						Expor	nent	s				
	a^k	1	2	3	4	5	6	7	8	9	10	(mod 11)
	2	2	4	8	5	10	9	7	3	6	1	-
Bases	3	3	9	5	4	1	3	9	5	4	1	
	4	4	5	9	3	1	4	5	9	3	1	
	5	5	3	4	9	1	5	3	4	9	1	
	6	6	3	7	9	10	5	8	4	2	1	
	7	7	5	2	3	10	4	6	9	8	1	
	8	8	9	6	4	10	3	2	5	7	1	
	9	9	4	3	5	1	9	4	3	5	1	
	10	10	1	10	1	10	1	10	1	10	1	

Observations:

• when $k = 10 \ (p-1)$, $a^k \equiv 1 \pmod{11}$.

 $\downarrow a^{p-1} \equiv 1 \pmod{p}$. \rightarrow Fermat's Little Theorem

• a = 2, 6, 7, 8 "don't repeat". All the values are unique.

•
$$a^5 \equiv \begin{cases} 1 & a = 3, 4, 5, 9 \\ 10 & a = 2, 6, 7, 8, 10 \end{cases}$$

- $10^k \equiv \begin{cases} 1 & k \equiv 0 \pmod{2} \\ 10 & (k \equiv 1 \pmod{2}) \end{cases}$
- 1, 3, 4, 5, and 9 are the only numbers that appear when the base is not 2, 6, 7, and 8.
- Once we encounter a 1, the row repeats.
- In the even columns, the numbers are "symmetric" if the columns were flipped between 5 and 6.

It is useful to know what power of something gives us $1 \pmod{}$

3 Chapter 7

<u>Book Definition</u>: a <u>belongs to the exponent</u> $h(mod \ m)$, if $a^h \equiv 1(mod \ m)$ and h is the least exponent this is true.

Example:

- 2 belongs to the exponent $10 \pmod{11}$
- 3 belongs to the exponent 5(mod 11)

 \downarrow We're going to call this the order of $a(mod \ m)$.

- The order of $2 \pmod{11}$ is 10.
- The order of $3 \pmod{11}$ is 5.

We write this as $ord_m(a)$

• $ord_{11}(2) = 10$, $ord_{11}(3) = 5$, $ord_{11}(10) = 2$.

<u>Theorem 1</u>: If the $ord_m(a) = h$ and $a^r \equiv 1 \pmod{m}$, then h|r.

Proof. Write
$$r = hk + s$$
, (division with remainder), where $s < h$.
Then, $1 \equiv a^r \equiv a^{hk+s} \pmod{m}$
 $\equiv a^{hk} \cdot a^s \pmod{m}$
 $\equiv (a^h)^k \cdot a^s \pmod{m}$
 $\equiv 1 \cdot a^s \pmod{m}$
So, $a^s \equiv 1 \pmod{m}$
 $s < h$. So, $s = 0$
Therefore, $h|r$.

Corollary 1: Since $a^{\varphi(m)} \equiv 1 \pmod{m}$. If gcd(a,m) = 1. We have that the $ord_m(a)|\varphi(m)$, if gcd(a,m) = 1.

Example: $\varphi(11) = 10$, so the order of every element should divide 10. $ord_{11}(2) = 10$, $ord_{11}(3) = 5$, $ord_{11}(10) = 2 \rightarrow$ all divide $10 \checkmark$

Definition: a is a primitive root (mod m) if $ord_m(a) = \varphi(m)$.

Example: The primitive roots mod 11 are 2, 6, 7, 8.

 $\begin{array}{l} \label{eq:main_states} \begin{array}{l} \displaystyle \mathbf{Example:} \ m=8 \\ \hline \mathrm{If} \ gcd(a,8) \neq 1, \ \mathrm{then} \ a^k \equiv 1(mod \ 8) \ \mathrm{isn't} \ \mathrm{possible.} \\ & \downarrow \ \mathrm{Only} \ \mathrm{possibilities} \ \mathrm{are} \ 1, \ 3, \ 5, \ 7. \\ 3^2 \equiv 1(mod \ 8), \ ord_8(3) = 2 = ord_8(5) = ord_8(7) \\ 5^2 \equiv 25 \equiv 1(mod \ 8) \\ 7^2 \equiv 49 \equiv 1(mod \ 8) \\ \mathrm{Since} \ \varphi(8) = 4, \ 8 \ \mathrm{has} \ \mathrm{no} \ \mathrm{primitive} \ \mathrm{roots.} \end{array}$

<u>Theorem 2</u>: If a is a primitive root $(mod \ m)$, then $a^1, a^2, a^3, ..., a^{\varphi(m)}$ are mutually in-congruent and form a reduced residue system $(mod \ m)$.

Proof. (By contradiction)

Suppose there exists $1 \leq r < s \leq \varphi(m)$, with $a^r \equiv a^s \pmod{m}$, then, $a^r \equiv a^r (a^{s-r}) \pmod{m}$ $1 \equiv a^{s-r} \pmod{m}$ So, s-r > 0 and $s-r < \varphi(m)$, but $a^{s-r} \equiv \pmod{m}$. This contradicts $\varphi(m)$ being the order of $a \pmod{m}$.

<u>Theorem 3</u>: If the $ord_m(a) = h$ and gcd(h,k) = d, then $ord_m(a^k) = \frac{h}{d}$.

Example: $ord_{11}(2) = 10 = h$ Let k = 6 gcd(10, 6) = 2 $ord_{11}(2^6) \equiv ord_{11}(9) = \frac{10}{2} = 5 \checkmark$ $*2^6 \equiv 9 \pmod{11}$

Proof. Write $j = ord_m(a^k)$ (goal: prove that $j = \frac{h}{d} = h_1$) Write: $h_1 = \frac{h}{d}$, $k_1 = \frac{k}{d}$ Since $j = ord_m(a^k)$ $1 \equiv (a^k)^j \equiv a^{kj} (mod \ m)$ Since $ord_m(a) = h_1$, we know h|kj. Then, $h_1|k_1j$ (divided out the gcd from each) and $gcd(h_1, k_1) = 1$. So, $h_1|j$.

> Now, compute $(a^k)^{h_1} \equiv a^{kh_1} \pmod{m}$ $\equiv a^{k_1h_1d} \pmod{m}$ $\equiv a^{hk_1} \pmod{m}$ $\equiv (a^h)^{k_1} \pmod{m}$ $\equiv 1 \pmod{m}$

So, $(a^k)^{h_1} \equiv 1 \pmod{m}$ So, $ord_m(a^k)|h_1$. Thus, $j|h_1$ So, $j = h_1 \Rightarrow ord_m(a^k) = \frac{h}{d}$

Corollary 2: If g is a primitive root (mod m), then g^r is a primitive root (mod m) if and only if $gcd(r, \varphi(m)) = 1$.

Proof. The order of $g^r = \frac{ord_m(g)}{gcd(r, ord_m(g))} = \frac{\varphi(m)}{gcd(r, \varphi(m))}$ This equals $\varphi(m)$ exactly when $gcd(r, \varphi(m)) = 1$.

> **Example:** If g is a primitive root (mod 11), then g^r is a primitive root (mod 11). If gcd(r, 10) = 1, then r = 1, 3, 7, 9. Try this with g = 2... $2^3 \equiv 8 \checkmark$ $2^7 \equiv 7 \checkmark$ $2^9 \equiv 6 \checkmark$ 8, 7 and 6 are all primitive roots.

Corollary 3: If m has a primitive root, then it has $\varphi(\varphi(m))$ primitive roots.

Proof. If g is a primitive root, then g^r is a primitive root whenever $gcd(r, \varphi(m)) = 1$. The number of such things is $\varphi(\varphi(m))$.

> **Example:** $\varphi(\varphi(11)) = \varphi(10) = \varphi(2)\varphi(5) = 1 \cdot 4.$ So, 11 has 4 primitive roots.

When do we have at least one primitive root?

4 Answer: m has a primitive root if and only if m is a prime or twice a prime.

Theorem 4: Every prime has a primitive root.

Proof. Let p be a prime. Then $ord_p(a)|p-1$. Let $N(h) = \#\{a(mod \ p)|ord_p(a) = h\}$ (count the number of residues $(mod \ p)$, with $ord_p(a) = h$)

> Example: If p = 11 $N(2) = 1 \{10\}$ $N(5) = 4 \{3, 4, 5, 9\}$ $N(10) = 4 \{2, 6, 7, 8\}$ $N(1) = 1 \{1\}$

Now, $\Sigma_{h|p-1}N(h) = p-1$ Goal: prove $N(p-1) \neq 0$ (Then has a primitive root) Claim that N(h) is either 0 or $\varphi(h)$. If it's not zero, then at least one thing has order h, call it b. $b^h \equiv 1 \pmod{p}$. Now, consider $x^h \equiv 1 \pmod{p}$ $x^h - 1 \equiv 0 \pmod{p}$

This polynomial has at most h distinct roots. $b^1, b^2, b^3, ..., b^h$ all satisfy this equation because $(b^i)^h - 1 \equiv (b^h)^i - 1$ $\equiv 1 - 1 \equiv 0 \pmod{p}.$ So, these are all of the solutions to this equation. How many of these have order h? b^i has order h iff gcd(i, h) = 1. So, there are $\varphi(h)$ many such *i*. N(h) = 0 or $\varphi(h)$ Now, $p - 1 = \sum_{h|p-1} N(h)$ If $N(h) < \varphi(h)$, then $p - 1 = \sum_{h|p-1} N(h) < \sum_{h|p-1} \varphi(h) = p - 1$ Recall: $\Sigma_{d|n}\varphi(d) = n \rightarrow \text{Contradiction!}$ So, $N(h) = \varphi(h)$ (ALWAYS!) $N(p-1) = \varphi(p-1)$ and $\varphi(p-1) \ge 1$. So, p has at least one element of order p-1. So, p has a primitive root. (In fact it has $\varphi(p-1)$ many.)

Г		