MATH 656- Spring 2019 Class Notes

Scribe: Carolyn Rogers

April 10, 2019
April 15, 2019

1 Euler Tasks:

Task 29: $2^{11}-1=2047=23 * 89$
\llcorner NOT prime

Conjecture 1: There are infinitely many primes where $2 p+1$ is also prime. (Sophie Germain Primes)

Conjecture 2: There are infinitely many primes where $2^{p}-1$ is prime. (Mersenne Primes)
Conjecture 3: There are infinitely many n with $2^{2^{n}}+1$ primes. (Fermat Primes)

* No one knows a proof of any of these conjectures.*

2 Task:

Create a table of exponents $(\bmod 11)$.

Exponents

a^{k}	1	2	3	4	5	6	7	8	9	10	$(\bmod 11)$
2	2	4	8	5	10	9	7	3	6	1	
3	3	9	5	4	1	3	9	5	4	1	
4	4	5	9	3	1	4	5	9	3	1	
d) 5	5	3	4	9	1	5	3	4	9	1	
\% 6	6	3	7	9	10	5	8	4	2	1	
$\cdots \quad 7$	7	5	2	3	10	4	6	9	8	1	
8	8	9	6	4	10	3	2	5	7	1	
9	9	4	3	5	1	9	4	3	5	1	
10	10	1	10	1	10	1	10	1	10	1	

Observations:

- when $k=10(p-1), a^{k} \equiv 1(\bmod 11)$.
$\left\llcorner a^{p-1} \equiv 1(\bmod p) . \rightarrow\right.$ Fermat's Little Theorem
- $a=2,6,7,8$ "don't repeat". All the values are unique.
- $a^{5} \equiv\left\{\begin{array}{cc}1 & a=3,4,5,9 \\ 10 & a=2,6,7,8,10\end{array}\right.$
- $10^{k} \equiv\left\{\begin{array}{cc}1 & k \equiv 0(\bmod 2) \\ 10 & (\mathrm{k} \equiv 1(\bmod 2)\end{array}\right.$
- $1,3,4,5$, and 9 are the only numbers that appear when the base is not $2,6,7$, and 8 .
- Once we encounter a 1 , the row repeats.
- In the even columns, the numbers are "symmetric" if the columns were flipped between 5 and 6 .
It is useful to know what power of something gives us 1 (mod_)

3 Chapter 7

Book Definition: a belongs to the exponent $h(\bmod m)$, if $a^{h} \equiv 1(\bmod m)$ and h is the least exponent this is true.

Example:

- 2 belongs to the exponent $10(\bmod 11)$
- 3 belongs to the exponent $5(\bmod 11)$

4 We're going to call this the order of $a(\bmod m)$.

- The order of $2(\bmod 11)$ is 10 .
- The order of $3(\bmod 11)$ is 5 .

We write this as $\operatorname{ord}_{m}(a)$

- $\operatorname{ord}_{11}(2)=10, \operatorname{ord}_{11}(3)=5, \operatorname{ord}_{11}(10)=2$.

Theorem 1: If the $\operatorname{ord}_{m}(a)=h$ and $a^{r} \equiv 1(\bmod m)$, then $h \mid r$.

Proof. Write $r=h k+s$, (division with remainder), where $s<h$.
Then, $1 \equiv a^{r} \equiv a^{h k+s}(\bmod m)$

$$
\begin{aligned}
& \equiv a^{h k} \cdot a^{s}(\bmod m) \\
& \equiv\left(a^{h}\right)^{k} \cdot a^{s}(\bmod m) \\
& \equiv 1 \cdot a^{s}(\bmod m) \\
& \text { So, } a^{s} \equiv 1(\bmod m) \\
& s<h . \text { So, } s=0 \\
& \text { Therefore, } h \mid r .
\end{aligned}
$$

Corollary 1: Since $a^{\varphi(m)} \equiv 1(\bmod m)$. If $\operatorname{gcd}(a, m)=1$. We have that the $\operatorname{ord}_{m}(a) \mid \varphi(m)$, if $\overline{g c d}(a, m)=1$.

Example: $\varphi(11)=10$, so the order of every element should divide 10. $\operatorname{ord}_{11}(2)=10$, $\overline{\operatorname{ord}_{11}(3)=5}$, ord $\operatorname{co}_{11}(10)=2 \rightarrow$ all divide $10 \checkmark$

Definition: a is a primitive root $(\bmod m)$ if $\operatorname{ord}_{m}(a)=\varphi(m)$.

Example: The primitive roots mod 11 are 2, 6, 7, 8 .

Example: $m=8$
If $\operatorname{gcd}(a, 8) \neq 1$, then $a^{k} \equiv 1(\bmod 8)$ isn't possible.
\llcorner Only possibilities are $1,3,5,7$.
$3^{2} \equiv 1(\bmod 8), \operatorname{ord}_{8}(3)=2=\operatorname{ord}_{8}(5)=\operatorname{ord}_{8}(7)$
$5^{2} \equiv 25 \equiv 1(\bmod 8)$
$7^{2} \equiv 49 \equiv 1(\bmod 8)$
Since $\varphi(8)=4,8$ has no primitive roots.

Theorem 2: If a is a primitive root $(\bmod m)$, then $a^{1}, a^{2}, a^{3}, \ldots, a^{\varphi(m)}$ are mutually in-congruent and form a reduced residue system $(\bmod m)$.

Proof. (By contradiction)
Suppose there exists $1 \leq r<s \leq \varphi(m)$, with $a^{r} \equiv a^{s}(\bmod m)$,
then, $a^{r} \equiv a^{r}\left(a^{s-r}\right)(\bmod m)$
$1 \equiv a^{s-r}(\bmod m)$
So, $s-r>0$ and $s-r<\varphi(m)$, but $a^{s-r} \equiv(\bmod m)$. This contradicts $\varphi(m)$ being the order of $a(\bmod m)$.

Theorem 3: If the $\operatorname{ord}_{m}(a)=h$ and $\operatorname{gcd}(h, k)=d$, then $\operatorname{ord}_{m}\left(a^{k}\right)=\frac{h}{d}$.
Example: $\operatorname{ord}_{11}(2)=10=h$
Let $k=6$
$\operatorname{gcd}(10,6)=2$
$\operatorname{ord}_{11}\left(2^{6}\right) \equiv \operatorname{ord}_{11}(9)=\frac{10}{2}=5 \checkmark$
${ }^{*} 2^{6} \equiv 9(\bmod 11)$
Proof. Write $j=\operatorname{ord}_{m}\left(a^{k}\right)$
(goal: prove that $j=\frac{h}{d}=h_{1}$)
Write: $h_{1}=\frac{h}{d}, k_{1}=\frac{k}{d}$
Since $j=\operatorname{ord}_{m}\left(a^{k}\right)$
$1 \equiv\left(a^{k}\right)^{j} \equiv a^{k j}(\bmod m)$
Since $\operatorname{ord}_{m}(a)=h_{1}$, we know $h \mid k j$.
Then, $h_{1} \mid k_{1} j$ (divided out the $g c d$ from each)
and $\operatorname{gcd}\left(h_{1}, k_{1}\right)=1$. So, $h_{1} \mid j$.
Now, compute $\left(a^{k}\right)^{h_{1}} \equiv a^{k h_{1}}(\bmod m)$

$$
\begin{aligned}
& \equiv a^{k_{1} h_{1} d}(\bmod m) \\
& \equiv a^{h k_{1}}(\bmod m) \\
& \equiv\left(a^{h}\right)^{k_{1}}(\bmod m) \\
& \equiv 1(\bmod m)
\end{aligned}
$$

So, $\left(a^{k}\right)^{h_{1}} \equiv 1(\bmod m)$
So, $\operatorname{ord}_{m}\left(a^{k}\right) \mid h_{1}$. Thus, $j \mid h_{1}$
So, $j=h_{1} \Rightarrow \operatorname{ord}_{m}\left(a^{k}\right)=\frac{h}{d}$

Corollary 2: If g is a primitive root $(\bmod m)$, then g^{r} is a primitive root $(\bmod m)$ if and only if $\operatorname{gcd}(r, \varphi(m))=1$.

Proof. The order of $g^{r}=\frac{\operatorname{ord}_{m}(g)}{\operatorname{gcd}\left(r, o r d_{m}(g)\right)}=\frac{\varphi(m)}{\operatorname{gcd}(r, \varphi(m)}$
This equals $\varphi(m)$ exactly when $\operatorname{gcd}(r, \varphi(m))=1$.

Example: If g is a primitive root $(\bmod 11)$, then g^{r} is a primitive root $(\bmod 11)$.
If $\operatorname{gcd}(r, 10)=1$, then $r=1,3,7,9$. Try this with $g=2 \ldots$
$2^{3} \equiv 8 \checkmark$
$2^{7} \equiv 7 \checkmark$
$2^{9} \equiv 6 \checkmark$
8,7 and 6 are all primitive roots.

Corollary 3: If m has a primitive root, then it has $\varphi(\varphi(m))$ primitive roots.
Proof. If g is a primitive root, then g^{r} is a primitive root whenever $\operatorname{gcd}(r, \varphi(m))=1$.
The number of such things is $\varphi(\varphi(m))$.

Example: $\varphi(\varphi(11))=\varphi(10)=\varphi(2) \varphi(5)=1 \cdot 4$.
So, 11 has 4 primitive roots.

When do we have at least one primitive root?
\square Answer: m has a primitive root if and only if m is a prime or twice a prime.

Theorem 4: Every prime has a primitive root.
Proof. Let p be a prime. Then $\operatorname{ord}_{p}(a) \mid p-1$. Let $N(h)=\#\left\{a(\bmod p) \mid \operatorname{ord}_{p}(a)=h\right\}$ (count the number of residues $(\bmod p)$, with $\left.\operatorname{ord}_{p}(a)=h\right)$

Example: If $p=11$

$$
\begin{aligned}
& N(2)=1\{10\} \\
& N(5)=4\{3,4,5,9\} \\
& N(10)=4\{2,6,7,8\} \\
& N(1)=1\{1\}
\end{aligned}
$$

Now, $\Sigma_{h \mid p-1} N(h)=p-1$
Goal: prove $N(p-1) \neq 0$ (Then has a primitive root)
Claim that $N(h)$ is either 0 or $\varphi(h)$. If it's not zero, then at least one thing has order h, call it b.
$b^{h} \equiv 1(\bmod p)$.
Now, consider $x^{h} \equiv 1(\bmod p)$

$$
x^{h}-1 \equiv 0(\bmod p)
$$

This polynomial has at most h distinct roots. $b^{1}, b^{2}, b^{3}, \ldots, b^{h}$ all satisfy this equation because $\left(b^{i}\right)^{h}-1 \equiv\left(b^{h}\right)^{i}-1$

$$
\equiv 1-1 \equiv 0(\bmod p) \text {. }
$$

So, these are all of the solutions to this equation.
How many of these have order h ?
b^{i} has order h iff $g c d(i, h)=1$.
So, there are $\varphi(h)$ many such i.
$N(h)=0$ or $\varphi(h)$
Now, $p-1=\Sigma_{h \mid p-1} N(h)$
If $N(h)<\varphi(h)$, then $p-1=\Sigma_{h \mid p-1} N(h)<\Sigma_{h \mid p-1} \varphi(h)=p-1$
Recall: $\Sigma_{d \mid n} \varphi(d)=n \rightarrow$ Contradiction!
So, $N(h)=\varphi(h)$ (ALWAYS!)
$N(p-1)=\varphi(p-1)$ and $\varphi(p-1) \geq 1$.
So, p has at least one element of order $p-1$.
So, p has a primitive root.
(In fact it has $\varphi(p-1)$ many.)

