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1 Euler Tasks:

Task 29: 211 − 1 = 2047 = 23 ∗ 89�

NOT prime

Conjecture 1: There are infinitely many primes where 2p+1 is also prime. (Sophie Germain
Primes)

Conjecture 2: There are infinitely many primes where 2p − 1is prime. (Mersenne Primes)

Conjecture 3: There are infinitely many n with 22
n

+ 1 primes. (Fermat Primes)

* No one knows a proof of any of these conjectures.*

2 Task:

Create a table of exponents (mod 11).

Observations:

• when k = 10 (p− 1) , ak ≡ 1(mod 11).

�

ap−1 ≡ 1(mod p).→ Fermat’s Little Theorem

• a = 2, 6, 7, 8 ”don’t repeat”. All the values are unique.

• a5 ≡

{
1 a = 3, 4, 5, 9
10 a = 2, 6, 7, 8, 10
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• 10k ≡

{
1 k ≡ 0(mod 2)
10 (k ≡ 1 (mod 2)

• 1, 3, 4, 5, and 9 are the only numbers that appear when the base is not 2, 6, 7,and 8.

• Once we encounter a 1, the row repeats.

• In the even columns, the numbers are ”symmetric” if the columns were flipped between 5
and 6.

*It is useful to know what power of something gives us 1 (mod )*

3 Chapter 7

Book Definition: a belongs to the exponent h(mod m), if ah ≡ 1(mod m) and h is the least
exponent this is true.

Example:

• 2 belongs to the exponent 10(mod 11)

• 3 belongs to the exponent 5(mod 11)

�

We’re going to call this the order of a(mod m).

• The order of 2(mod 11) is 10.

• The order of 3(mod 11) is 5.

We write this as ordm(a)

• ord11(2) = 10 , ord11(3) = 5 , ord11(10) = 2.

Theorem 1: If the ordm(a) = h and ar ≡ 1(mod m), then h|r.

Proof. Write r = hk + s, (division with remainder), where s < h.
Then, 1 ≡ ar ≡ ahk+s(mod m)

≡ ahk · as(mod m)
≡ (ah)k · as(mod m)
≡ 1 · as(mod m)
So, as ≡ 1(mod m)
s < h. So, s = 0
Therefore, h|r.
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Corollary 1: Since aϕ(m) ≡ 1(mod m). If gcd(a,m) = 1. We have that the ordm(a)|ϕ(m), if
gcd(a,m) = 1.

Example: ϕ(11) = 10, so the order of every element should divide 10. ord11(2) = 10,
ord11(3) = 5, ord11(10) = 2 → all divide 10 X

Definition: a is a primitive root (mod m) if ordm(a) = ϕ(m).

Example: The primitive roots mod 11 are 2, 6, 7, 8.

Example: m = 8

If gcd(a, 8) 6= 1, then ak ≡ 1(mod 8) isn’t possible.�

Only possibilities are 1, 3, 5, 7.
32 ≡ 1(mod 8), ord8(3) = 2 = ord8(5) = ord8(7)
52 ≡ 25 ≡ 1(mod 8)
72 ≡ 49 ≡ 1(mod 8)
Since ϕ(8) = 4, 8 has no primitive roots.

Theorem 2: If a is a primitive root (mod m), then a1, a2, a3, ..., aϕ(m) are mutually in-congruent
and form a reduced residue system (mod m).

Proof. (By contradiction)

Suppose there exists 1 ≤ r < s ≤ ϕ(m) , with ar ≡ as(mod m),
then, ar ≡ ar(as−r)(mod m)
1 ≡ as−r(mod m)
So, s− r > 0 and s− r < ϕ(m), but as−r ≡ (mod m). This contradicts ϕ(m)
being the order of a(mod m).

Theorem 3: If the ordm(a) = h and gcd(h, k) = d, then ordm(ak) = h
d .

Example: ord11(2) = 10 = h
Let k = 6
gcd(10, 6) = 2
ord11(2

6) ≡ ord11(9) = 10
2 = 5 X

*26 ≡ 9(mod 11)

Proof. Write j = ordm(ak)
(goal: prove that j = h

d = h1)

Write: h1 = h
d , k1 = k

d
Since j = ordm(ak)
1 ≡ (ak)j ≡ akj(mod m)
Since ordm(a) = h1 , we know h|kj .
Then, h1|k1j (divided out the gcd from each)
and gcd(h1, k1) = 1. So, h1|j.

Now, compute (ak)h1 ≡ akh1(mod m)
≡ ak1h1d(mod m)
≡ ahk1(mod m)
≡ (ah)k1(mod m)
≡ 1(mod m)
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So, (ak)h1 ≡ 1(mod m)
So, ordm(ak)|h1. Thus, j|h1
So, j = h1 ⇒ ordm(ak) = h

d

Corollary 2: If g is a primitive root (mod m), then gr is a primitive root (mod m) if and only
if gcd(r, ϕ(m)) = 1.

Proof. The order of gr = ordm(g)
gcd(r,ordm(g)) = ϕ(m)

gcd(r,ϕ(m)

This equals ϕ(m) exactly when gcd(r, ϕ(m)) = 1.

Example: If g is a primitive root (mod 11), then gr is a primitive root (mod 11).

If gcd(r, 10) = 1, then r = 1, 3, 7, 9. Try this with g = 2...
23 ≡ 8 X
27 ≡ 7 X
29 ≡ 6 X
8, 7 and 6 are all primitive roots.

Corollary 3: If m has a primitive root, then it has ϕ(ϕ(m)) primitive roots.

Proof. If g is a primitive root, then gr is a primitive root whenever gcd(r, ϕ(m)) = 1.
The number of such things is ϕ(ϕ(m)).

Example: ϕ(ϕ(11)) = ϕ(10) = ϕ(2)ϕ(5) = 1 · 4.
So, 11 has 4 primitive roots.

When do we have at least one primitive root?�

Answer: m has a primitive root if and only if m is a prime or twice a prime.

Theorem 4: Every prime has a primitive root.

Proof. Let p be a prime. Then ordp(a)|p− 1. Let N(h) = #{a(mod p)|ordp(a) = h}
(count the number of residues (mod p), with ordp(a) = h)

Example: If p = 11
N(2) = 1 {10}
N(5) = 4 {3, 4, 5, 9}
N(10) = 4 {2, 6, 7, 8}
N(1) = 1 {1}

Now, Σh|p−1N(h) = p− 1
Goal: prove N(p− 1) 6= 0 (Then has a primitive root)
Claim that N(h) is either 0 or ϕ(h). If it’s not zero, then at least one thing has order h, call it
b.
bh ≡ 1(mod p).
Now, consider xh ≡ 1 (mod p)

xh − 1 ≡ 0 (mod p)
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This polynomial has at most h distinct roots. b1, b2, b3, ..., bh all satisfy this equation because
(bi)h − 1 ≡ (bh)i − 1

≡ 1− 1 ≡ 0(mod p).
So, these are all of the solutions to this equation.
How many of these have order h?
bi has order h iff gcd(i, h) = 1.
So, there are ϕ(h) many such i.
N(h) = 0 or ϕ(h)
Now, p− 1 = Σh|p−1N(h)
If N(h) < ϕ(h), then p− 1 = Σh|p−1N(h) < Σh|p−1ϕ(h) = p− 1
Recall: Σd|nϕ(d) = n → Contradiction!
So, N(h) = ϕ(h) (ALWAYS!)
N(p− 1) = ϕ(p− 1) and ϕ(p− 1) ≥ 1.
So, p has at least one element of order p− 1.
So, p has a primitive root.
(In fact it has ϕ(p− 1) many.)
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