MATH 565 Spring 2019 - Class Notes

3/20/19

Scribe: Samantha Rangos

Summary: In this class we discussed ways to find the size of a reduced residue system, $\varphi(n)$. The Möbius Function and the definition of multiplicative functions were introduced.

1 Reduced Residue Systems and Möbius Function

Definition 1. $\varphi(n)$

- Size of a reduced residue system (mod n)
- Count of integers in 1, 2, 3...n with gcd(a, n) = 1
- If p is prime, then $\varphi(p) = p 1$

Case $n = p^k$, $\varphi(p^k)$

From the numbers 1, 2, 3... p^k , we have to remove all multiples of p.

How many of these numbers are divisible by p?

p, 2p, 3p, 4p...
$$p^k = p(p^k - 1)$$

The number of integers divisible by p is $\frac{p^k}{p} = p^{k-1}$.

The number of integers that are coprime is $p^k - p^{k-1}$, thus $\varphi(p^k) = p^k - p^{k-1}$.

If k=1,
$$\varphi(p^1) = p^1 - p^0 = p - 1$$
.

Observation: $\varphi(p^k) = p^k - p^{k-1}$

$$p^k = p^k - p^{k-1} + p^{k-1} - p^{k-2} + p^{k-2} \dots + p - 1 + 1$$

$$=\varphi(p^k)+\varphi(p^{k-1})+\varphi(p^{k-2})+\ldots+\varphi(p)+\varphi(1)$$

We could write this as:

$$p^k = \sum_{j=0}^k \varphi(p^j) = \sum_{d|p^k} \varphi(d)$$

Theorem 1. For any integer n,

$$\sum_{d|n} \varphi(d)$$

Proof. Let $T_d(n)$ be the set of numbers from 1, 2, ... n which have gcd(a, n) = d.

Note: $T_1(n)$ = reduced residue system

Let $\#T_d(n)$ be the size of this set, then $n = \sum_{d|n} \#T_d(n)$

because every number from 1 to n is in exactly one set $T_d(n)$.

The set $\#T_d(n)$ contains all the numbers which have gcd d with n. This set is contained in the numbers $d, 2d, 3d...(\frac{n}{d})d$.

So,
$$T_d(n) = \{ad : \text{with } gcd(ad, n) = d\}$$

 $gcd(a, \frac{n}{d} = 1 \iff gcd(ad, n) = d$
 $\#T_d(n) = \#\{a \in \{1, 2, \dots \frac{n}{d}\} : gcd(a, \frac{n}{d} = 1\}$
 $=\varphi(\frac{n}{d})$
 $n = \sum_{d|n} \#T_d(n) = \sum_{d|n} \varphi(\frac{n}{d}) = \sum_{dd^1 = n} \varphi(d^1) = \sum_{d|n} \varphi(d)$

Ex: n=12

$$\begin{split} & \sum_{d|n} (\varphi(\frac{n}{d}) = \varphi(\frac{12}{1}) + \varphi(\frac{12}{2}) + \varphi(\frac{12}{3}) + \varphi(\frac{12}{4}) + \varphi(\frac{12}{6}) + \varphi(\frac{12}{12}) \\ & = \varphi(12) + \varphi(6) + \varphi(4) + \varphi(3) + \varphi(2) + \varphi(1) \\ & = \sum_{d|n} \varphi(d) \end{split}$$

Definition 2. The Möbius Function

$$\mu(n) = \left\{0, \text{ if } p^2 | n \text{ for some } p \text{ or } (-1)^k, \text{ where } n = p_1 p_2 p_3 ... p_k \right\}$$

Ex:

$$\mu(3) = -1$$

$$\mu(5) = -1$$

$$\mu(6) = 1$$

$$\mu(12) = 0$$

$$\mu(50) = 0$$

$$\mu(250) = 0$$

$$\mu(16) = 0$$

$$\mu(30) = -1$$

Theorem 2.

$$\varphi(n) = \sum_{d|n} \mu(d) \frac{n}{d} = n \prod_{p|n} (1 - \frac{1}{p})$$

Proof. Induction on k, the number of distinct prime factors of n.

Base Case:
$$k = 0 \to n=1$$

 $\varphi(1) = \sum_{d|1} \mu(d) \frac{1}{d} = 1$
 $= 1 \prod_{p|1} (1 - \frac{1}{p}) = 1$
 $k = 1 \to n = p^{\alpha}$
 $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha - 1}$
 $\sum_{d|p^{\alpha}} \mu(d) \frac{n}{d} =$
 $\sum_{i=0}^{\alpha} \mu(p^{i}) \frac{p^{\alpha}}{p^{i}}$
 $= \mu(p^{0})p^{\alpha} + \mu(p^{1}) \frac{p^{\alpha}}{p} + \dots + \mu(p^{\alpha})(1)$
 $= p^{\alpha} - p^{\alpha - 1}$
 $p^{\alpha} \prod_{q|p^{\alpha}} (1 - \frac{1}{q}) = p^{\alpha} (1 - \frac{1}{p}) = p - p^{\alpha - 1}$

Now suppose this works for all integers with k distinct prime factors.

Suppose n has k + 1 distinct prime factors.

Write $n = p^{\alpha} n^1$ and $p \nmid n^1$

Note: n^1 has k prime factors.

Compute $\varphi(n) = \varphi(p^{\alpha}n^1)$

Count integers from 1 to n having no factors in common with n^1 or p^{α} .

We know that the number of integers between 1 and n^1 with no prime factors in common with n^1 is $\varphi(n^1) = \sum_{d|n^1} \mu(d) \frac{n^1}{d} = n^1 \prod_{q|n^1} (1 - \frac{1}{q})$ by induction.

And the number of integers less than p^{α} coprime to p^{α} is $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$.

If we take a b with $1 \le b \le n$ with gcd(b, n) = 1, we must have $gcd(b, n^1) = 1$ and $gcd(b, p^{\alpha}) = 1$ since $n = p^{\alpha}n^1$.

By the Chinese Remainder Theorem, every such integer arises as a number coprime to n^1 and an integer coprime to p^{α} .

So the total number is $\varphi(n^1)\varphi(p^{\alpha})$. (Basic Combinatorial Principle)

$$\begin{split} & \varphi(n) = \varphi(n^1) \varphi(p^\alpha) = (\sum_{d \mid n^1} \mu(d) \frac{n^1}{d}) (p^\alpha - p^{\alpha - 1}) = p^\alpha \sum_{d \mid n^1} \mu(d) \frac{n^1}{d} - p^{\alpha - 1} \sum_{d \mid n^1} \mu(d) \frac{n^1}{d} \\ & = \sum_{d \mid n^1} \mu(d) \frac{n}{d} - \frac{1}{p} \sum_{d \mid n^1} \mu(d) \frac{n}{d} \\ & = \sum_{d \mid n} \mu(d) \frac{n}{d} - \frac{1}{p} \sum_{d \mid n} \mu(d) \frac{n}{d} \\ & = \sum_{d \mid n} \mu(d) \frac{n}{d} - \frac{1}{p} \sum_{d \mid n} \mu(d) \frac{n}{d} \\ & = \sum_{d \mid n} \mu(d) \frac{n}{d} + \sum_{d \mid n} \mu(pd) \frac{n}{pd} = \sum_{d \mid n} \mu(d) \frac{n}{d} + \sum_{d \mid n} \mu(pd) \frac{n}{pd} + \sum_{d \mid n} \mu(p^2d) \frac{n}{p^2d} + \sum_{d \mid n} \mu(p^3d) \frac{n}{p^3d} + \sum_{d \mid n} \mu(p^3d)$$

$$\dots + \sum_{\substack{d \mid n \\ p \nmid d}} \mu(p^{\alpha}d) \frac{n}{p^{\alpha}d}$$

Every divisor of n looks like p^1d where $p \nmid d$

$$=\sum_{d|n}\mu(d)\frac{n}{d}$$

The proof is complete after repeating the same process for \prod .

Corollary 1. If $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \cdot \cdot p_k^{\alpha_k}$, then

$$\varphi(n) = \varphi(p_1^{\alpha_1}) \cdot \varphi(p_2^{\alpha_2}) \cdot \cdot \cdot \varphi(p_k^{\alpha_k})$$

Definition 3. A function f(n) is multiplicative if f(nm) = f(n)(m) when gcd(m,n) = 1.

Examples of Multiplicative Functions:

- $\varphi(n)$
- $\mu(n)$
- $d(n) = \sum_{d|n} 1$
- $\sigma(n) = \sum_{d|n} d$