# MATH 565 Spring 2019 - Class Notes 

$$
3 / 5 / 19
$$

Scribe: Kourtney Harrison

## 1 Congruences

## Definition 1. Congruent

$$
\begin{gathered}
a \equiv b(\bmod c) \\
\text { If }(b-a) \text { is divisible by } c . \\
\text { Say: "a is congruent to } b \text { modulo } c "
\end{gathered}
$$

Ex: $7 \equiv 12(\bmod 5)$ because $(12-7)=5$ and $5 \mid 5$
Intuitively we think of numbers as the "the same" modulo c if they have the same remainder when divided by c

Ex(cont.):

- $7 \equiv 2(\bmod 5)$
- $2 \equiv 7(\bmod 5)$
- $7 \equiv 2 \equiv 10+2 \equiv 2(6) \equiv 5(\bmod 5)$
- $7 \equiv-3(\bmod 5)$
- $2 \not \equiv-2(\bmod 5)$

Theorem 1. If $a \equiv a^{\prime}(\bmod c)$ and $b \equiv b^{\prime}(\bmod c)$, then

$$
\begin{gathered}
a \pm b \equiv a^{\prime} \pm b^{\prime}(\bmod c) \\
\text { and } a b \equiv a^{\prime} b^{\prime}(\bmod c)
\end{gathered}
$$

Note: Division does not always work!
Proof. Suppose $a \equiv a^{\prime}(\bmod c)$ and $b \equiv b^{\prime}(\bmod c)$ so

$$
\begin{aligned}
& \left(a^{\prime}-a\right) \equiv k c \text { for some } k \text { and } \\
& \left(b^{\prime}-b\right) \equiv l c \text { for some } l
\end{aligned}
$$

Consider $\left(a^{\prime}+b^{\prime}\right)-(a+b)$

$$
\begin{aligned}
& =\left(a^{\prime}-a\right)+\left(b^{\prime}-b\right) \\
& =k c+l c \\
& =c(k+l)
\end{aligned}
$$

So $c \mid\left(a^{\prime}+b^{\prime}\right)-(a+b)$
So $a+b \equiv a^{\prime}+b^{\prime}(\bmod c)$
Now consider $a^{\prime} b^{\prime}-a b$

$$
\begin{aligned}
& =a^{\prime} b^{\prime}-a b^{\prime}+a b^{\prime}-a b \\
& =\left(a^{\prime} b^{\prime}-a^{\prime} b\right)+\left(a^{\prime} b-a b\right) \\
& =a^{\prime}\left(b^{\prime}-b\right)+b\left(a^{\prime}-a\right) \\
& =a^{\prime}(l c)+b(k c) \\
& =c\left(a^{\prime} l+b k\right)
\end{aligned}
$$

So $c \mid\left(a^{\prime} b^{\prime}\right)-(a b)$
So $a b \equiv a^{\prime} b^{\prime}(\bmod c)$

Theorem 2. Properties of Modulo

$$
\begin{gathered}
a \equiv a(\bmod c) \quad \text { (Reflexive Property) } \\
a \equiv b(\bmod c) \Rightarrow \quad b \equiv a(\bmod c) \quad \text { (Symmetric Property) } \\
\text { If } a \equiv b(\bmod c) a n d b \equiv d(\bmod c) \text {, then } a \equiv d(\bmod c) \quad \text { (Transitive Property) }
\end{gathered}
$$

Proof. Transitive Property
Suppose $a \equiv b(\bmod c) \Rightarrow c \mid(b-a)$
and $b \equiv d(\bmod c) \Rightarrow c \mid(d-b)$
Now consider $d-a$

$$
\begin{aligned}
& =d-b+b-a \\
& =(d-b)+(b-a)
\end{aligned}
$$

$c$ divides both of these so $c$ divides $(d-a)$

## Ex:

$$
\begin{gathered}
3 \equiv 10(\bmod 7) \text { and } 5 \equiv-2(\bmod 7) \\
3+5=10 \text { and } 10-2=8 \\
\text { so } 3+5 \equiv 10+(-2)(\bmod 7) \\
3(5)=15 \text { and } 10(-2)=-20 \\
\text { so } 15 \equiv-20(\bmod 7) \\
3(5) \equiv 10(-2)(\bmod 7)
\end{gathered}
$$

Theorem 3. Cancellation Property
If $b c \equiv b d(\bmod n)$ and $\operatorname{gcd}(b, n)=1$, then

$$
c \equiv d(\bmod n)
$$

We can "divide" by $b(\bmod n)$ only if $\operatorname{gcd}(b, n)=1$
Proof. If $b c \equiv b d(\bmod n)$, then

$$
\begin{gathered}
n \mid(b d-b c) \\
n \mid b(d-c)
\end{gathered}
$$

because $\operatorname{gcd}(b, n)=1$
we know $n \mid(d-c)$ so

$$
c \equiv d(\bmod n)
$$

Ex: $12 \equiv 6(\bmod 2)$
$3(4) \equiv 3(2)(\bmod 2)$
Since $\operatorname{gcd}(3,2)=1$ we can cancel out the 3's
$4 \equiv 2(\bmod 2)$
But $2(6) \equiv 2(3)(\bmod 2)$ try cancelling out the 2 's
$6 \not \equiv 3(\bmod 2)$ because $\operatorname{gcd}(2,2)=2$
Definition 2. Residue
If $a \equiv b(\bmod n)$ we'll say that $b$ is a residue of $a$ modulo $n$.
We'll say that $\left\{r_{1}, r_{2}, \ldots, r_{s}\right\}$ is a complete residue system modulo $n$ if

1. $r_{i} \not \equiv r_{j}(\bmod n)$ if $i \not \equiv j$
2. Any integer $m$ has $m \equiv r_{i}(\bmod n)$ for some $i$

Ex: $\{0,1,2\}$ is a complete residue system $(\bmod 3)$
So is $\{-1,0,1\},\{0,4,8\},\{-1,3,31\}$, or $\{1,2,3\}$

Our Favorite Complete Residue System:

$$
\{0,1, \ldots, n-1\}(\bmod n)
$$

Theorem 4. If $\left\{r_{1}, r_{2}, \ldots, r_{s}\right\}$ is a complete residue system $(\bmod n)$, then $s=n$

Theorem 5. Fermat's Little Theorem
If $p$ is prime, then

$$
n^{p} \equiv n(\bmod p)
$$

Note: If $\operatorname{gcd}(n, p)=1$, then our cancellation property says we can cancel an $n$ from both sides

$$
n^{p-1} \equiv 1(\bmod p)
$$

Theorem 6. Wilson's Theorem
If $p$ is prime, then

$$
(p-1)!\equiv-1(\bmod p)
$$

Ex: Wilson's Theorem
$p=5$
$(p-1)!=4!=4(3)(2)(1)=24$
$24 \equiv-1(\bmod 5)$
Definition 3. A reduced residue system modulo $n$ is a set $\left\{r_{1}, r_{2}, \ldots, r_{s}\right\}$
Satisfying:

1. $r_{i} \neq r_{j}(\bmod n)$
2. $\operatorname{gcd}\left(n, r_{i}\right)=1$ for each $i$
3. If $\operatorname{gcd}(m, n)=1$, then $m \equiv r_{j}(\bmod n)$ for some $i$

Ex: Reduced Residue System
Consider $n=12$. Find a reduced residue system $(\bmod n)$.
$\{\emptyset, 1, \mathcal{2}, \not \supset, 4,5, \not \subset, 7, \not, \varnothing, \not, 10,11\}$
To get the reduced residue system, start with a complete residue system and get rid of all numbers that are not relatively prime with $n$.

Reduced Residue System (mod 12): $\{1,5,7,11\}$
Note: You can $\div$ by any number in the reduced residue system but you can only,+- , or $\times$ in the complete residue system

Definition 4. $\varphi(n)=\phi(n)$
$\varphi(n)=$ size of a reduced residue system $(\bmod n)$

$$
\varphi(n)=\#\{o<a<n \mid \operatorname{gcd}(a, n)=1
$$

$\# \rightarrow$ means count
If $p$ is prime, then

$$
\varphi(p)=p-1
$$

Ex: $\varphi(12)=4$
Theorem 7. Euler's Theorem
If $\operatorname{gcd}(a, n)=1$, then

$$
a^{\varphi(n)} \equiv 1(\bmod n)
$$

Ex: $n=10$ and $a=3$
$\operatorname{gcd}(10,3)=1$ $\varphi(10)=4 \rightarrow$ reduced residue system $\{1,3,7,9\}$
Euler's Theorem Says

$$
3^{4} \equiv 9^{2} \equiv 81 \equiv 1(\bmod 10)
$$

Proof. Let $\left\{r_{1}, r_{2}, \ldots, r_{s}\right\}$ be a reduced residue system $(\bmod n)$
Note: $s=\varphi(10)$
Multiply each $r_{i}$ by $a$ (from theorem)
$\left\{a r_{1}, a r_{2}, \ldots, a r_{s}\right\}$
all of these are coprime to $n$
Note that each $a r_{i} \equiv r_{j}$ for some $j$ because
$\left\{r_{1}, r_{2}, \ldots, r_{s}\right\}$ is a reduced residue system
Ex: $n=10$ and $a=3$
$\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$
$\{1,3,7,9\}$

$$
\begin{align*}
3 r_{1} \equiv 3 & (\bmod 10) \\
3 r_{2} \equiv 3(3) \equiv 9 & (\bmod 10)  \tag{1}\\
3 r_{3} \equiv 3(7) \equiv 21 \equiv 1 & (\bmod 10) \\
3 r_{4} \equiv 3(9) \equiv 27 \equiv 7 & (\bmod 10)
\end{align*} \rightarrow \begin{array}{ll}
3 r_{1} \equiv r_{2} & (\bmod 10) \\
3 r_{2} \equiv r_{4} & (\bmod 10) \\
3 r_{3} \equiv r_{1} & (\bmod 10) \\
3 r_{4} \equiv r_{3} & (\bmod 10)
\end{array}
$$

Notes that if $a r_{i} \equiv a r_{j}(\bmod n)$ the cancellation property says $r_{i} \equiv r_{j}(\bmod n)$
So $\left\{a r_{1}, a r_{2}, \ldots, a r_{s}\right\}$ is also a reduced residue system
Multiply together all things in this set

$$
\left(a r_{1}\right)\left(a r_{2}\right) \ldots\left(a r_{s}\right) \equiv P(\bmod n)
$$

Since multiplying by $a$ just changed the order of things in our reduced residue system $\left(r_{1}\right)\left(r_{2}\right) \ldots\left(r_{s}\right) \equiv P(\bmod n)$
$P \equiv\left(a r_{1}\right)\left(a r_{2}\right) \ldots\left(a r_{s}\right)(\bmod n)$
$P \equiv a^{s}\left(r_{1}\right)\left(r_{2}\right) \ldots\left(r_{s}\right)(\bmod n)$
$P \equiv a^{\varphi(n)} P(\bmod n)$ (use Cancellation Property)
$1 \equiv a^{\varphi(n)} P(\bmod n)$

Corollary 1. If $n=p$ is prime, then

$$
\varphi(p)=p-1
$$

If $\operatorname{gcd}(a, n)=1$, then

$$
a^{\varphi(p)} \equiv a^{p-1} \equiv 1(\bmod n)
$$

Note that Fermat's Little Theorem $\rightarrow a^{p-1} \equiv 1(\bmod n)$ is a special case of Euler's Theorem

