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0.1 Combinatorics

0.1.1 Basic Combinatorial Principle

If α can be selected from a set S in m ways and β can be selected from a set T in n ways
then the number of pairs α, β is nm.

Let r denote permutations. Count the number of ways to choose r things from a set of
size n. Denote this by

nPr = n(n− 1)(n− 2)...(n− r + 1)

Proof. Define k to be n− r +1.
Base Case: r=1

nPr = nP1

counts the ways to pick one object from n things.

n− 1 + 1 = n

n = n

Induction Hypothesis: Assume that the theorem holds for mP(r − 1) so the number of
ways to pick r − 1 things from a set of size m is

m(m− 1)...(m− (r − 1) + 1)

Now we want to count nPr. We can pick the first object in n ways. Now there are r − 1
more choices that need to be made. These can be picked from (n−1) things. This is counted
by nP−1r − 1.

Our induction hypothesis tells us this is

(n− 1)(n− 2)(...)((n− 1)− (r − 1) + 1)

(n− 1)(n− 2)(...)(n− r + 1)
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Now we use the basic combinatory principle to say that the total number is

nPr = n ∗ (Pn − 1)(r − 1)

= n((n− 1)...(n− (r − 1)))

= n((n− 1)...(n− r + 1))

Note: Order matters in permutations. Picking 2 things from a set of size 5:

(a, c) 6= (c, a) (1)

A combination is the number of ways to pick r things from n objects if order doesn’t
matter. Write this as nCr, ”n choose r.”

Pick r-permutations of n, each r combination shows up r! different times.(
n

r

)
∗r! = nPr(

n

r

)
=

nPr

r!
=

n!

(n− r)!r!
=
n(n− 1)...(n− r + 1)

r(r − 1)...(1)

Theorem 1. The product of any n consecutive integers is divisible by the product of the first
n integers.

Example: 7 ∗ 8 ∗ 9 is divisible by 6 = 1 ∗ 2 ∗ 3.

Proof. Let N be the largest of the numbers in the product of consecutive integers.

N ∗ (N − 1) ∗ (N − 2)...(N − n+ 1)

Want to prove this is divisible by n! Count the number of ways to pick n things from a
set of size N. (

N

n

)
=

N !

(N − n)!n!
=
N(N − 1)...(N − n+ 1

n!
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But (
N

n

)
has to be an integer because it’s counting something.

N(N − 1)...(N − n+ 1) = n!

*
(
N
n

)
so this product is divisible by n!

0.1.2 Fermat’s Little Theorem

Theorem 2. If a > 1 and in integer and p is prime then

p | (ap − a)

.

Examples:

p = 3, a = 2

a3 − a = 23 − 2 = 8− 2 = 6 =⇒ 3 | 6

p = 7, a = 2

a7 − a = 27 − 2 = 126 =⇒ 7 | 126

p = 5, a = 3

35 − 3 = 240 =⇒ 5 | 240

Proof. Count bracelets that can be made out of p beads and a choices of colors.

Note: Let R=red, B=blue, Y=yellow and G=green

Make bracelets by putting beats on a string and tying the two ends together.

Monochromatic: R-R-R or B-B-B

Multi-colored: R-B-R is the same bracelet as R-R-B, but they are two different strands.
When connected, the blue bead is in between two red beads.

Note that you are not allowed to flip a bracelet R-G-B-Y 6= Y −B −G−R.
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Count strands: a choices for the first bead, a choices for the second, third, ...

There are ap possible strands, with a = 2 possibilities and p = 3 choices to make, giving
us 8 strands in total:

R-R-R, R-R-B, R-B-B, R-B-R, B-R-B, B-R-R, B-B-R, B-B-B.

Notice that there is 1 bracelet with all red beads, 1 bracelet with all blue beads, 3 bracelets
with 2 red beads and 1 blue bead, and 3 bracelets with 2 blue beads and 1 red bead.

Of these ap strands, exactly a of them are monochromatic ap − a multicolored strands.

How many times does each multicolor bracelet get produced by different strands? Take
a strand and move k beads from the top to the bottom without changing their order, then
we product the same bracelet.

Pick a multicolor strand and let q be the least number of beads we can move from top to
bottom to get the same strand. If we do this with 2q, 3q, 4q, ... beads, we still get the same
strand. Moving all p beads from the top to the bottom is the same strand.

So p = iq for some i so q is either 1 or p. If q = 1, the strand is monochromatic so if we
have a multicolor strand, q = p. So each strand is part of a family of p = q different strands
that all produce the dame bracelet.

So our ap−a muticolor strands can be divided evenly into families of size p so p | (ap−a).
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