MATH 565 Spring 2019 - Class Notes

2/27/19
Scribe: Alyssa Eller

0.1 Combinatorics

0.1.1 Basic Combinatorial Principle

If α can be selected from a set S in m ways and β can be selected from a set T in n ways then the number of pairs α, β is nm .

Let r denote permutations. Count the number of ways to choose r things from a set of size n. Denote this by

$$
{ }^{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1)
$$

Proof. Define k to be $n-r+1$.
Base Case: $r=1$

$$
{ }^{n} P_{r}={ }^{n} P_{1}
$$

counts the ways to pick one object from n things.

$$
\begin{gathered}
n-1+1=n \\
n=n
\end{gathered}
$$

Induction Hypothesis: Assume that the theorem holds for ${ }^{m} P(r-1)$ so the number of ways to pick $r-1$ things from a set of size m is

$$
m(m-1) \ldots(m-(r-1)+1)
$$

Now we want to count ${ }^{n} P_{r}$. We can pick the first object in n ways. Now there are $r-1$ more choices that need to be made. These can be picked from $(n-1)$ things. This is counted by ${ }^{n} P _1 r-1$.

Our induction hypothesis tells us this is

$$
\begin{gathered}
(n-1)(n-2)(\ldots)((n-1)-(r-1)+1) \\
(n-1)(n-2)(\ldots)(n-r+1)
\end{gathered}
$$

Now we use the basic combinatory principle to say that the total number is

$$
\begin{aligned}
& { }^{n} P_{r}=n *\left(P_{n}-1\right)(r-1) \\
= & n((n-1) \ldots(n-(r-1))) \\
= & n((n-1) \ldots(n-r+1))
\end{aligned}
$$

Note: Order matters in permutations. Picking 2 things from a set of size 5:

$$
\begin{equation*}
(a, c) \neq(c, a) \tag{1}
\end{equation*}
$$

A combination is the number of ways to pick r things from n objects if order doesn't matter. Write this as ${ }^{n} C_{r}$, "n choose r."

Pick r-permutations of n, each r combination shows up r ! different times.

$$
\begin{gathered}
\binom{n}{r} \\
* r!={ }^{n} P_{r} \\
\binom{n}{r} \\
=\frac{{ }^{n} P_{r}}{r!}=\frac{n!}{(n-r)!r!}=\frac{n(n-1) \ldots(n-r+1)}{r(r-1) \ldots(1)}
\end{gathered}
$$

Theorem 1. The product of any n consecutive integers is divisible by the product of the first n integers.

Example: $7 * 8 * 9$ is divisible by $6=1 * 2 * 3$.
Proof. Let N be the largest of the numbers in the product of consecutive integers.

$$
N *(N-1) *(N-2) \ldots(N-n+1)
$$

Want to prove this is divisible by n ! Count the number of ways to pick n things from a set of size N .

$$
\left.=\frac{N!}{(N-n)!n!}=\frac{\binom{N}{n}}{N(N-1) \ldots(N-n+1}\right) n!\quad ~ ل
$$

But

$$
\binom{N}{n}
$$

has to be an integer because it's counting something.

$$
N(N-1) \ldots(N-n+1)=n!
$$

* $\binom{N}{n}$
so this product is divisible by n !

0.1.2 Fermat's Little Theorem

Theorem 2. If $a>1$ and in integer and p is prime then

$$
p \mid\left(a^{p}-a\right)
$$

Examples:

$$
\begin{aligned}
& p=3, a=2 \\
& a^{3}-a=2^{3}-2=8-2=6 \Longrightarrow 3 \mid 6 \\
& p=7, a=2 \\
& a^{7}-a=2^{7}-2=126 \Longrightarrow 7 \mid 126 \\
& p=5, a=3 \\
& 3^{5}-3=240 \Longrightarrow 5 \mid 240
\end{aligned}
$$

Proof. Count bracelets that can be made out of p beads and a choices of colors.
Note: Let $\mathrm{R}=$ red, $\mathrm{B}=$ blue, $\mathrm{Y}=$ yellow and $\mathrm{G}=$ green
Make bracelets by putting beats on a string and tying the two ends together.
Monochromatic: R-R-R or B-B-B
Multi-colored: R-B-R is the same bracelet as R-R-B, but they are two different strands. When connected, the blue bead is in between two red beads.

Note that you are not allowed to flip a bracelet R-G-B-Y $\neq Y-B-G-R$.

Count strands: a choices for the first bead, a choices for the second, third, ...
There are a^{p} possible strands, with $a=2$ possibilities and $p=3$ choices to make, giving us 8 strands in total:
$\mathrm{R}-\mathrm{R}-\mathrm{R}, \mathrm{R}-\mathrm{R}-\mathrm{B}, \mathrm{R}-\mathrm{B}-\mathrm{B}, \mathrm{R}-\mathrm{B}-\mathrm{R}, \mathrm{B}-\mathrm{R}-\mathrm{B}, \mathrm{B}-\mathrm{R}-\mathrm{R}, \mathrm{B}-\mathrm{B}-\mathrm{R}, \mathrm{B}-\mathrm{B}-\mathrm{B}$.
Notice that there is 1 bracelet with all red beads, 1 bracelet with all blue beads, 3 bracelets with 2 red beads and 1 blue bead, and 3 bracelets with 2 blue beads and 1 red bead.

Of these a^{p} strands, exactly a of them are monochromatic $a^{p}-a$ multicolored strands.
How many times does each multicolor bracelet get produced by different strands? Take a strand and move k beads from the top to the bottom without changing their order, then we product the same bracelet.

Pick a multicolor strand and let q be the least number of beads we can move from top to bottom to get the same strand. If we do this with $2 q, 3 q, 4 q, \ldots$ beads, we still get the same strand. Moving all p beads from the top to the bottom is the same strand.

So $p=i q$ for some i so q is either 1 or p. If $q=1$, the strand is monochromatic so if we have a multicolor strand, $q=p$. So each strand is part of a family of $p=q$ different strands that all produce the dame bracelet.

So our $a^{p}-a$ muticolor strands can be divided evenly into families of size p so $p \mid\left(a^{p}-a\right)$.

