Week 2 Notes

Justin Thomas

February 2019

1 Last Week's "To Think About"

Use Euclid's algorithm to compute gcd(21,13)

$$
\begin{aligned}
& 21=1(13)+8 \\
& 13=1(8)+5 \\
& 8=1(5)+3 \\
& 5=1(3)+2 \\
& 3=1(2)+1 \\
& 2=2(1)
\end{aligned}
$$

Note that the sequence of remainders is the Fibonacci Sequence backwards.
Compute $\operatorname{gcd}\left(\mathrm{F}_{n+1}, F_{n}\right)$
How many times does F_{n} go into F_{n+1} ?
$\mathrm{F}_{n+1}=1\left(F_{n}\right)+F_{n-1}$
$\mathrm{F}_{n}=1\left(F_{n-1}\right)+F_{n-2}$
Note: $0 \leq F_{n-1}<F_{n}$ always holds for $n>1$
The steps of Euclid's algorithm for Fibonacci numbers are:
$F_{n+1}=1\left(F_{n}\right)+F_{n-1}$ where $\mathrm{q}=1$ if $\mathrm{n}_{\mathrm{c}} 1$ and $\mathrm{r}=\mathrm{F}_{n-1}$
Now we can take this and write an induction proof from here.

2 Divisibility (cont.)

2.1 Corollary 2-1

If $d=\operatorname{gcd}(a, b)$ then there exists integers x and y such that $a x+b y=d$.
Proof: Use the Euclidean algorithm backwards.

Suppose that we use the Euclidean algorithm and get equations
$\mathrm{a}=\mathrm{q}_{0} b+r_{1}$
$\mathrm{b}=\mathrm{q}_{1} r_{1}+r_{2}$
$\mathrm{r}_{n-1}=q_{n} r_{n}+0$
Claim: There exist x_{i} and y_{i} such that $a x_{i}+b y_{i}=r_{i}$ for each $i \geq 1$;
and $a x_{i-2}+b y_{i-2}=r_{i-2}$.

Proof By Induction:

Base Case: $i=1$
$\mathrm{r}_{1}=a-q_{0} b$
Let $x_{1}=1, y_{1}=-q_{0}$
Induction Step:
Suppose there exist x_{i-1} and y_{i-1} such that $a x_{i-1}+b y_{i-1}=r_{i-1}$
We want to prove there exist x_{i} and y_{i} such that $a x_{i}+b y_{i}=r_{i}$.
We know from before that $r_{i-2}=q_{i-1} r_{i-1}+r_{i}$ so it follows that $r_{i}=r_{i-2}-q_{i-1} r_{i-1}$
$=\left(\mathrm{ax}_{i-2}+b y_{i-2}\right)-q_{i-1}\left(a x_{i-1}+b y_{i-1}\right)$
$=\mathrm{a}\left(\mathrm{x}_{i-2}-q_{i-1} x_{i-1}\right)+b\left(y_{i-2}-q y_{i-1}\right)$
We can define these quantities being multiplied to a and b as x_{i} and y_{i}.
When $i=n$ we have $a x_{n}+b y_{n}=r_{n}=d=\operatorname{gcd}(a, b)$.

2.2 Example

Find x and y such that $16 x+6 y=\operatorname{gcd}(16,6)=2$
$16=2(6)+4$ can be rewritten to $4=(16-2(6))$
$6=1(4)+2$ can be rewritten to $2=(6-1(4))$
It follows that:
$2=6-1(16-2(6))$
$2=6-1(16)+2(6)$
$2=3(6)-1(16)$
Thus, $x=-1$ and $y=3$.

2.3 Corollary 2-2

If $g c d(a, b)=d$ there exist x and y such that $a x+b y=c$ if and only if $d \mid c$.
Proof: \Rightarrow Suppose $a x+b y=c$ has a solution. We know that $d \mid a$ and $d \mid b$ so $a=d f$ and $b=d g$. Then

$$
d f x+d g y=c
$$

$$
d(f x+g y)=c
$$

Thus, $d \mid c$.
\Leftarrow Suppose $d \mid c$. This means that $c=d e$. By our theorem, there exist x and y such that $a x+b y=d$. Multiply through e $a(x e)+b(y e)=d e=c$

2.4 Definitions

1. p is a prime number if whenever $a \mid p$ and $a>0$ then either $a=1$ and $a=p$. (Definition 2-2)
2. We say that a and b are relatively prime if $\operatorname{gcd}(a, b)=1$. (Definition 2-3)

For ex. 10 and 21 are relatively prime.
Theorem: If $\operatorname{gcd}(a, c)=1$ and $a \mid b c$ then $a \mid b$
Proof: Since $\operatorname{gcd}(a, c)=1$ there exist x and y so that $a x+c y=1$
Multiply through by b:
$a b x+b c y=b$
Since $a \mid b c$ there exists f such that $a f=b c$. So:
$a b x+a f y=b$
$a(b x+f y)=b$
So $a \mid b$

2.5 Corollary 2-3

If p is a prime number and $p \mid a b$ then either $p \mid a$ or $p \mid b$. (not both)
Proof: If $p \mid a$ we're done. So suppose it doesn't, then
$\operatorname{gcd}(a, p)=1$
By our theorem, $p \mid b$.

2.6 The Fundamental Theorem of Arithmetic

If $n \geq 2$ is an integer then there exists prime numbers $p_{1} \leq p_{2} \leq p_{3} \ldots \leq p_{k}$
And this is unique n that if $p_{1}^{\prime} \leq p_{2}^{\prime} \leq \ldots p_{l}^{\prime}$ are primes and $p_{1}^{\prime} p_{2}^{\prime} \ldots p_{l}^{\prime}=n$ then $l=k$ and $p_{i}=p_{i}$

Proof by induction:

Base Case: $n=2 ; 2$ is prime so we have a factorization into primes $p_{1}=2$ and is unique.

Induction: Assume that for every $1<a<n a$ has a a unique factorization into primes.

Case 1: n is prime then $p_{1}=n$ and we have a unique factorization of n.
Case 2: n is not prime. This means there exist a and b with $1<a<n$ and $1<b<n$ with $n=a b$.

By our induction hypothesis a and b factor uniquely into primes.
$a=p_{1} p_{2} \ldots p_{k}$
$b=p_{1}^{\prime} p_{2}^{\prime} \ldots p_{l}^{\prime}$
So $n=p_{1} p_{2} \ldots p_{k} p_{1}^{\prime} p_{2}^{\prime} \ldots p_{l}^{\prime}$
Reorder to get a factorization of n.

Regarding uniqueness:

So n has a factorization, need to show that it is unique.
Suppose this factorization is not unique. Then
$n=p_{1} p_{2} \ldots p_{k}=q_{1} q_{2} \ldots q_{l}$
Now $p_{1} \mid n$ so $p_{1} \mid q_{1} q_{2} \ldots q_{l}$
So either $p_{1} \mid q_{1}$ or $p_{1} \mid\left(q_{2} \ldots q_{l}\right)$
By induction, $p_{1} \mid q_{i}$ for some i thus
$p_{1}=q_{i}$
Similarly, $q_{i} \mid p_{j}$ for some j and so $q_{1}=p_{j}$
$p_{1}=q_{i}=p_{j} \geq p_{1}$ so $j=i=1$ and $p_{1}=q_{1}$
$\frac{n}{p_{1}}=p_{2} p_{3} \ldots p_{k}=q_{2} \ldots q_{l}$
$\frac{n}{p_{1}}<n$ so it factors uniquely (into prime numbers) so
$k=l$ and $p_{i}=q_{i}$

