
1 Week 2: February 6 - 13, 2019

1.1 Mathematical Induction

Theorem 1.1 (Mathematical Induction). 1

Let n0 ∈ N ∪ {0} and let P (n) be a statement for each natural number n ≥ n0. If

1. The statement P (n0) is true.

2. For all k ≥ n0, the truth of P (k) implies the truth of P (k + 1).

then P (n) is true for all n ∈ N.

Note in class we assumed for the inductive step that P (n) is true for all n ≤ k such that n, k ∈ N.

Example 1.1. Prove using induction
n∑

i=0

2i = 2n+1 − 1

First, check the base case n = 0

0∑
i=0

20 = 20+1 − 1X

by the inductive hypothesis assume for all k ≥ 0 is true, namely,

k∑
i=0

2i = 2k+1 − 1

Now show P (k + 1)

k+1∑
i=0

2i = 2(k+1)+1 − 1

is true. Return to the inductive hypothesis and show it implies P (k + 1) by adding 2k+1 to both sides

k∑
i=0

2i + 2k+1 = 2k+1 − 1 + 2k+1

k+1∑
i=0

2i = 2 · 2k+1 − 1 = 2k+2 − 1 = 2(k+1)+1 − 1

1Bartle, R., Sherbert, D. (2000). Introduction to Real Analysis. New York, NY: Wiley & Sons. p. 13
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2 Other Number Worlds

There are other sets of numbers, and some of the those sets do not have unique prime factorizations. For
example, the set of numbers Z adjoin

√
−5 do not have unique factorizations. Numbers in the set of Z adjoin√

−5 have the form

a + b
√
−5, a, b ∈ Z

the product of two numbers in Z adjoin
√
−5 is defined by

(a + b
√
−5)(c + d

√
−5) = ac + ad

√
−5 + cb

√
−5− 5bd = (ac− 5bd) + (ad + cb)

√
−5

From this definition it is possible to show that 6 = 6 + 0
√
−5 does not have a unique prime factorization,

namely,

6 = (2− 0
√
−5)(3 + 0

√
−5) or 6 = (1−

√
−5)(1 +

√
−5)

From the above observation we ask the question or questions, “Do the integers, Z, have a unique factoriza-
tion?” or “why do the integers, Z, have a unique factorization?”

2.1 Euclid’s Division Lemma

Theorem 2.1 (Euclid’s Division Lemma). For all j, k ∈ N there exists unique q, r ∈ N such that

0 ≤ r < k and j = qk + r

Proof. Break the proof into two parts: one for existence and one for uniqueness. Start first with existence
by constructing q and r. Construct q from j and k as

q =

⌊
j

k

⌋
Where b c is a well defined function that rounds rational numbers down to the nearest natural number. This
establishes the existence of q. Now we can use it and j and k to construct r, namely,

r = j − qk

Now work to establish 0 ≤ r < k. By definition

⌊
j

k

⌋
≤ j

k
=⇒ j

k
− 1 <

⌊
j

k

⌋
≤ j

k

multiply through by k

j − k <

⌊
j

k

⌋
k ≤ j =⇒ qk + r − k < qk ≤ qk + r

subtract through the inequality by qk

r − k < 0 ≤ r

Now take each inequality in turn, namely,
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r − k < 0 =⇒ r < k and 0 ≤ r

This completes the existence part of the proof. In order to prove uniqueness argue by contradiction.

Suppose for all j, k ∈ N there exists q′ and r′ that also satisfy j = q′k + r′ and 0 ≤ r′ < k.

q′k + r′ = qk + r =⇒ r′ − r = qk − q′k =⇒ r′ − r = k(q − q′)

since 0 ≤ r < k and 0 ≤ r′ < k

| r − r′ | < k =⇒ k > | r − r′ | = | k(q − q′) |

this is a contradiction if q 6= q′. So if q − q′ = 0 then r − r′ = 0 or q = q′ and r = r′ or q and r are unique.

2.2 Greatest Common Divisor

Definition 2.1. If a, b and q ∈ Z, then a divides b, denoted a|b such that b = qa. Also, a is called a divisor
of b.

Definition 2.2. If a, b ∈ Z and not both are zero, then d ∈ Z is called a common divisor of a and b, if

(i) d > 0

(ii) d | a and d | b

(iii) If f | a and f | b then f | d.

Example 2.1. If 2 | 6 then by definition 6 = 2(3)

Example 2.2.
3 6 | 5

Example 2.3.
a|0 =⇒ 0 = aq =⇒ 0 = a(0)

Theorem 2.2. If a, b ∈ N, then the gcd(a, b) exists and is unique.

Proof. Use the Euclidean Division Algorithm

a = bq1 + r1, 0 ≤ r1 < b

If r1 > 0 there exist q2 and r2 such that

b = r1q2 + r2, 0 ≤ r2 < r1

If r2 > 0, then there exist q3 and r3 such that

r1 = r2q3 + r3, 0 ≤ r3 < r2

If r3 > 0, then there exist q4 and r4 such that
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r2 = r3q4 + r4, 0 ≤ r4 < r3

repeat the algorithm until rn = 0 so that the last application of the algorithm yields

rn−2 = rn−1qn + rn, and rn = 0

Now use induction to prove rn−1 | b and ultimately a. The base case is when rn = 0, so

rn−2 = rn−1qn =⇒ rn−1 | rn−2 X

Now by the inductive hypothesis assume rk−2 = rk−1qk + rk is true and assume rn−1 | rk−2 and rn | rk−1.
By definition of divisibility, rk−2 = urn−1 and rk−1 = vrn−1. Substituting into inductive hypothesis

urn−1 = vrn−1qk + rk =⇒ rk = (u− vqk)rn−1 =⇒ rn−1 | rk

so by induction rn−1 | b.

Now assume f ∈ Z and f | a and f | b. By condition (iii) in the definition of common divisor f | d. Use
induction to show that f divides r2, . . . , rn−1. In order to prove the base case note that if f | a and f | b then

a = bq1 + r1
b = r1q2 + r2

=⇒ kf = lfq1 + rr
lf = r1q2 + r2

=⇒ lf = (kf − lfq1)q2 + r2

=⇒ r2 = f(f − kq2 + lq1q2) =⇒ f | r2X

By the inductive hypothesis assume f | r2, f | r3, . . . , f | k and

rk−2 = rk−1qk + rk

is true. So by the inductive hypothesis rk−2 = rf , rk−1 = sf and rk = tf , therefore substituting

tf = (rf − sfqk)qk+1 + rk+1 =⇒ rk+1 = f(t− rqk+1 + sqkqk+1) =⇒ f | rk+1

and this completes the existence part of the proof. Now in order to establish uniqueness assume there exist
d1, d2 ∈ Z that are both greatest common divisors of a, b ∈ Z. By definition of common divisor if d1 | a and
d1 | b, then d1 | d2; likewise, if d2 | a and d2 | b, then d2 | d1 which implies

d2 = kd1 and d1 = jd2 =⇒ d1 = j(kd1)

Since d1, d2, j, k ∈ Z then j = k = 1 and d1 = d2 which proves uniqueness.

Example 2.4. Find the gcd(391, 272)

391 = 272(1) + 119 =⇒ 272 = 119(2) + 34 =⇒ 119 = 34(3) + 17 =⇒ 34 = 17(2)

gcd(391, 272) = 17
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Question for next class: Let F0 = 1, F1 = 1 and Fn = Fn−1 + Fn−2

1. What is the gcd(Fn, Fn−1) for some fixed n.

2. How many steps does it take using Euclid’s Algorithm in terms of n.
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