1 Week 2: February 6-13, 2019

1.1 Mathematical Induction

Theorem 1.1 (Mathematical Induction).
Let $n_{0} \in \mathbb{N} \cup\{0\}$ and let $P(n)$ be a statement for each natural number $n \geq n_{0}$. If

1. The statement $P\left(n_{0}\right)$ is true.
2. For all $k \geq n_{0}$, the truth of $P(k)$ implies the truth of $P(k+1)$.
then $P(n)$ is true for all $n \in \mathbb{N}$.

Note in class we assumed for the inductive step that $P(n)$ is true for all $n \leq k$ such that $n, k \in \mathbb{N}$.
Example 1.1. Prove using induction

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

First, check the base case $n=0$

$$
\sum_{i=0}^{0} 2^{0}=2^{0+1}-1 \checkmark
$$

by the inductive hypothesis assume for all $k \geq 0$ is true, namely,

$$
\sum_{i=0}^{k} 2^{i}=2^{k+1}-1
$$

Now show $P(k+1)$

$$
\sum_{i=0}^{k+1} 2^{i}=2^{(k+1)+1}-1
$$

is true. Return to the inductive hypothesis and show it implies $P(k+1)$ by adding 2^{k+1} to both sides

$$
\begin{gathered}
\sum_{i=0}^{k} 2^{i}+2^{k+1}=2^{k+1}-1+2^{k+1} \\
\sum_{i=0}^{k+1} 2^{i}=2 \cdot 2^{k+1}-1=2^{k+2}-1=2^{(k+1)+1}-1
\end{gathered}
$$

[^0]
2 Other Number Worlds

There are other sets of numbers, and some of the those sets do not have unique prime factorizations. For example, the set of numbers \mathbb{Z} adjoin $\sqrt{-5}$ do not have unique factorizations. Numbers in the set of \mathbb{Z} adjoin $\sqrt{-5}$ have the form

$$
a+b \sqrt{-5}, \quad a, b \in \mathbb{Z}
$$

the product of two numbers in \mathbb{Z} adjoin $\sqrt{-5}$ is defined by

$$
(a+b \sqrt{-5})(c+d \sqrt{-5})=a c+a d \sqrt{-5}+c b \sqrt{-5}-5 b d=(a c-5 b d)+(a d+c b) \sqrt{-5}
$$

From this definition it is possible to show that $6=6+0 \sqrt{-5}$ does not have a unique prime factorization, namely,

$$
6=(2-0 \sqrt{-5})(3+0 \sqrt{-5}) \quad \text { or } \quad 6=(1-\sqrt{-5})(1+\sqrt{-5})
$$

From the above observation we ask the question or questions, "Do the integers, \mathbb{Z}, have a unique factorization?" or "why do the integers, \mathbb{Z}, have a unique factorization?"

2.1 Euclid's Division Lemma

Theorem 2.1 (Euclid's Division Lemma). For all $j, k \in \mathbb{N}$ there exists unique $q, r \in \mathbf{N}$ such that

$$
0 \leq r<k \quad \text { and } \quad j=q k+r
$$

Proof. Break the proof into two parts: one for existence and one for uniqueness. Start first with existence by constructing q and r. Construct q from j and k as

$$
q=\left\lfloor\frac{j}{k}\right\rfloor
$$

Where \rfloor is a well defined function that rounds rational numbers down to the nearest natural number. This establishes the existence of q. Now we can use it and j and k to construct r, namely,

$$
r=j-q k
$$

Now work to establish $0 \leq r<k$. By definition

$$
\left\lfloor\frac{j}{k}\right\rfloor \leq \frac{j}{k} \Longrightarrow \frac{j}{k}-1<\left\lfloor\frac{j}{k}\right\rfloor \leq \frac{j}{k}
$$

multiply through by k

$$
j-k<\left\lfloor\frac{j}{k}\right\rfloor k \leq j \Longrightarrow q k+r-k<q k \leq q k+r
$$

subtract through the inequality by $q k$

$$
r-k<0 \leq r
$$

Now take each inequality in turn, namely,

$$
r-k<0 \Longrightarrow r<k \quad \text { and } \quad 0 \leq r
$$

This completes the existence part of the proof. In order to prove uniqueness argue by contradiction. Suppose for all $j, k \in \mathbb{N}$ there exists q^{\prime} and r^{\prime} that also satisfy $j=q^{\prime} k+r^{\prime}$ and $0 \leq r^{\prime}<k$.

$$
q^{\prime} k+r^{\prime}=q k+r \Longrightarrow r^{\prime}-r=q k-q^{\prime} k \Longrightarrow r^{\prime}-r=k\left(q-q^{\prime}\right)
$$

since $0 \leq r<k$ and $0 \leq r^{\prime}<k$

$$
\left|r-r^{\prime}\right|<k \Longrightarrow k>\left|r-r^{\prime}\right|=\left|k\left(q-q^{\prime}\right)\right|
$$

this is a contradiction if $q \neq q^{\prime}$. So if $q-q^{\prime}=0$ then $r-r^{\prime}=0$ or $q=q^{\prime}$ and $r=r^{\prime}$ or q and r are unique.

2.2 Greatest Common Divisor

Definition 2.1. If a, b and $q \in \mathbb{Z}$, then a divides b, denoted $a \mid b$ such that $b=q a$. Also, a is called a divisor of b.

Definition 2.2. If $a, b \in \mathbb{Z}$ and not both are zero, then $d \in \mathbb{Z}$ is called a common divisor of a and b, if
(i) $d>0$
(ii) $d \mid a$ and $d \mid b$
(iii) If $f \mid a$ and $f \mid b$ then $f \mid d$.

Example 2.1. If $2 \mid 6$ then by definition $6=2(3)$

Example 2.2.

Example 2.3.

$$
a \mid 0 \Longrightarrow 0=a q \Longrightarrow 0=a(0)
$$

Theorem 2.2. If $a, b \in \mathbb{N}$, then the $\operatorname{gcd}(a, b)$ exists and is unique.

Proof. Use the Euclidean Division Algorithm

$$
a=b q_{1}+r_{1}, \quad 0 \leq r_{1}<b
$$

If $r_{1}>0$ there exist q_{2} and r_{2} such that

$$
b=r_{1} q_{2}+r_{2}, \quad 0 \leq r_{2}<r_{1}
$$

If $r_{2}>0$, then there exist q_{3} and r_{3} such that

$$
r_{1}=r_{2} q_{3}+r_{3}, \quad 0 \leq r_{3}<r_{2}
$$

If $r_{3}>0$, then there exist q_{4} and r_{4} such that

$$
r_{2}=r_{3} q_{4}+r_{4}, \quad 0 \leq r_{4}<r_{3}
$$

repeat the algorithm until $r_{n}=0$ so that the last application of the algorithm yields

$$
r_{n-2}=r_{n-1} q_{n}+r_{n}, \quad \text { and } \quad r_{n}=0
$$

Now use induction to prove $r_{n-1} \mid b$ and ultimately a. The base case is when $r_{n}=0$, so

$$
r_{n-2}=r_{n-1} q_{n} \Longrightarrow r_{n-1} \mid r_{n-2} \quad \checkmark
$$

Now by the inductive hypothesis assume $r_{k-2}=r_{k-1} q_{k}+r_{k}$ is true and assume $r_{n-1} \mid r_{k-2}$ and $r_{n} \mid r_{k-1}$. By definition of divisibility, $r_{k-2}=u r_{n-1}$ and $r_{k-1}=v r_{n-1}$. Substituting into inductive hypothesis

$$
u r_{n-1}=v r_{n-1} q_{k}+r_{k} \Longrightarrow r_{k}=\left(u-v q_{k}\right) r_{n-1} \Longrightarrow r_{n-1} \mid r_{k}
$$

so by induction $r_{n-1} \mid b$.
Now assume $f \in \mathbb{Z}$ and $f \mid a$ and $f \mid b$. By condition (iii) in the definition of common divisor $f \mid d$. Use induction to show that f divides r_{2}, \ldots, r_{n-1}. In order to prove the base case note that if $f \mid a$ and $f \mid b$ then

$$
\begin{gathered}
\begin{array}{l}
a=b q_{1}+r_{1} \\
b=r_{1} q_{2}+r_{2}
\end{array} \Longrightarrow \begin{array}{l}
k f=l f q_{1}+r_{r} \\
l f=r_{1} q_{2}+r_{2}
\end{array} \Longrightarrow l f=\left(k f-l f q_{1}\right) q_{2}+r_{2} \\
\\
\Longrightarrow r_{2}=f\left(f-k q_{2}+l q_{1} q_{2}\right) \Longrightarrow f \mid r_{2} \checkmark
\end{gathered}
$$

By the inductive hypothesis assume $f\left|r_{2}, f\right| r_{3}, \ldots, f \mid k$ and

$$
r_{k-2}=r_{k-1} q_{k}+r_{k}
$$

is true. So by the inductive hypothesis $r_{k-2}=r f, r_{k-1}=s f$ and $r_{k}=t f$, therefore substituting

$$
t f=\left(r f-s f q_{k}\right) q_{k+1}+r_{k+1} \Longrightarrow r_{k+1}=f\left(t-r q_{k+1}+s q_{k} q_{k+1}\right) \Longrightarrow f \mid r_{k+1}
$$

and this completes the existence part of the proof. Now in order to establish uniqueness assume there exist $d_{1}, d_{2} \in \mathbb{Z}$ that are both greatest common divisors of $a, b \in \mathbb{Z}$. By definition of common divisor if $d_{1} \mid a$ and $d_{1} \mid b$, then $d_{1} \mid d_{2}$; likewise, if $d_{2} \mid a$ and $d_{2} \mid b$, then $d_{2} \mid d_{1}$ which implies

$$
d_{2}=k d_{1} \quad \text { and } \quad d_{1}=j d_{2} \Longrightarrow d_{1}=j\left(k d_{1}\right)
$$

Since $d_{1}, d_{2}, j, k \in \mathbb{Z}$ then $j=k=1$ and $d_{1}=d_{2}$ which proves uniqueness.

Example 2.4. Find the $\operatorname{gcd}(391,272)$

$$
\begin{gathered}
391=272(1)+119 \Longrightarrow 272=119(2)+34 \Longrightarrow 119=34(3)+17 \Longrightarrow 34=17(2) \\
\\
\quad \operatorname{gcd}(391,272)=17
\end{gathered}
$$

Question for next class: Let $F_{0}=1, \quad F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$

1. What is the $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)$ for some fixed n.
2. How many steps does it take using Euclid's Algorithm in terms of n.

[^0]: ${ }^{1}$ Bartle, R., Sherbert, D. (2000). Introduction to Real Analysis. New York, NY: Wiley \& Sons. p. 13

