1 Week 2: February 6 - 13, 2019

1.1 Mathematical Induction

Theorem 1.1 (Mathematical Induction).¹

Let $n_0 \in \mathbb{N} \cup \{0\}$ and let P(n) be a statement for each natural number $n \ge n_0$. If

- 1. The statement $P(n_0)$ is true.
- 2. For all $k \ge n_0$, the truth of P(k) implies the truth of P(k+1).

then P(n) is true for all $n \in \mathbb{N}$.

Note in class we assumed for the inductive step that P(n) is true for all $n \leq k$ such that $n, k \in \mathbb{N}$.

Example 1.1. Prove using induction

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

First, check the base case n = 0

$$\sum_{i=0}^{0} 2^0 = 2^{0+1} - 1\checkmark$$

by the inductive hypothesis assume for all $k \ge 0$ is true, namely,

$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

Now show P(k+1)

$$\sum_{i=0}^{k+1} 2^i = 2^{(k+1)+1} - 1$$

is true. Return to the inductive hypothesis and show it implies P(k+1) by adding 2^{k+1} to both sides

$$\sum_{i=0}^{k} 2^{i} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$$
$$\sum_{i=0}^{k+1} 2^{i} = 2 \cdot 2^{k+1} - 1 = 2^{k+2} - 1 = 2^{(k+1)+1} - 1$$

¹Bartle, R., Sherbert, D. (2000). Introduction to Real Analysis. New York, NY: Wiley & Sons. p. 13

2 Other Number Worlds

There are other sets of numbers, and some of the those sets do not have unique prime factorizations. For example, the set of numbers \mathbb{Z} adjoin $\sqrt{-5}$ do not have unique factorizations. Numbers in the set of \mathbb{Z} adjoin $\sqrt{-5}$ have the form

$$a + b\sqrt{-5}, \quad a, b \in \mathbb{Z}$$

the product of two numbers in \mathbb{Z} adjoin $\sqrt{-5}$ is defined by

$$(a+b\sqrt{-5})(c+d\sqrt{-5}) = ac + ad\sqrt{-5} + cb\sqrt{-5} - 5bd = (ac-5bd) + (ad+cb)\sqrt{-5}$$

From this definition it is possible to show that $6 = 6 + 0\sqrt{-5}$ does not have a unique prime factorization, namely,

$$6 = (2 - 0\sqrt{-5})(3 + 0\sqrt{-5}) \quad \text{or} \quad 6 = (1 - \sqrt{-5})(1 + \sqrt{-5})$$

From the above observation we ask the question or questions, "Do the integers, \mathbb{Z} , have a unique factorization?" or "why do the integers, \mathbb{Z} , have a unique factorization?"

2.1 Euclid's Division Lemma

Theorem 2.1 (Euclid's Division Lemma). For all $j, k \in \mathbb{N}$ there exists unique $q, r \in \mathbf{N}$ such that

$$0 \leq r < k$$
 and $j = qk + r$

Proof. Break the proof into two parts: one for existence and one for uniqueness. Start first with existence by constructing q and r. Construct q from j and k as

$$q = \left\lfloor \frac{j}{k} \right\rfloor$$

Where $\lfloor \ \ \rfloor$ is a well defined function that rounds rational numbers down to the nearest natural number. This establishes the existence of q. Now we can use it and j and k to construct r, namely,

$$r = j - qk$$

Now work to establish $0 \le r < k$. By definition

$$\left\lfloor \frac{j}{k} \right\rfloor \le \frac{j}{k} \implies \frac{j}{k} - 1 < \left\lfloor \frac{j}{k} \right\rfloor \le \frac{j}{k}$$

multiply through by k

$$j-k < \left\lfloor \frac{j}{k} \right\rfloor k \le j \implies qk+r-k < qk \le qk+r$$

subtract through the inequality by qk

 $r-k < 0 \leq r$

Now take each inequality in turn, namely,

 $r - k < 0 \implies r < k$ and $0 \le r$

This completes the existence part of the proof. In order to prove uniqueness argue by contradiction. Suppose for all $j, k \in \mathbb{N}$ there exists q' and r' that also satisfy j = q'k + r' and $0 \le r' < k$.

$$q'k+r'=qk+r\implies r'-r=qk-q'k\implies r'-r=k(q-q')$$

since $0 \le r < k$ and $0 \le r' < k$

$$|r - r'| < k \implies k > |r - r'| = |k(q - q')|$$

this is a contradiction if $q \neq q'$. So if q - q' = 0 then r - r' = 0 or q = q' and r = r' or q and r are unique.

2.2 Greatest Common Divisor

Definition 2.1. If a, b and $q \in \mathbb{Z}$, then a divides b, denoted a|b such that b = qa. Also, a is called a divisor of b.

Definition 2.2. If $a, b \in \mathbb{Z}$ and not both are zero, then $d \in \mathbb{Z}$ is called a *common divisor* of a and b, if

- (i) d > 0
- (ii) $d \mid a \text{ and } d \mid b$
- (iii) If $f \mid a$ and $f \mid b$ then $f \mid d$.

Example 2.1. If $2 \mid 6$ then by definition 6 = 2(3)

Example 2.2.

3/5

Example 2.3.

$$a|0 \implies 0 = aq \implies 0 = a(0)$$

Theorem 2.2. If $a, b \in \mathbb{N}$, then the gcd(a, b) exists and is unique.

Proof. Use the Euclidean Division Algorithm

$$a = bq_1 + r_1, \qquad 0 \le r_1 < b$$

If $r_1 > 0$ there exist q_2 and r_2 such that

$$b = r_1 q_2 + r_2, \quad 0 \le r_2 < r_1$$

If $r_2 > 0$, then there exist q_3 and r_3 such that

 $r_1 = r_2 q_3 + r_3, \quad 0 \le r_3 < r_2$

If $r_3 > 0$, then there exist q_4 and r_4 such that

$$r_2 = r_3 q_4 + r_4, \quad 0 \le r_4 < r_3$$

repeat the algorithm until $r_n = 0$ so that the last application of the algorithm yields

$$r_{n-2} = r_{n-1}q_n + r_n$$
, and $r_n = 0$

Now use induction to prove $r_{n-1} \mid b$ and ultimately a. The base case is when $r_n = 0$, so

$$r_{n-2} = r_{n-1}q_n \implies r_{n-1} \mid r_{n-2} \checkmark$$

Now by the inductive hypothesis assume $r_{k-2} = r_{k-1}q_k + r_k$ is true and assume $r_{n-1} | r_{k-2}$ and $r_n | r_{k-1}$. By definition of divisibility, $r_{k-2} = ur_{n-1}$ and $r_{k-1} = vr_{n-1}$. Substituting into inductive hypothesis

$$ur_{n-1} = vr_{n-1}q_k + r_k \implies r_k = (u - vq_k)r_{n-1} \implies r_{n-1} \mid r_k$$

so by induction $r_{n-1} \mid b$.

Now assume $f \in \mathbb{Z}$ and $f \mid a$ and $f \mid b$. By condition (iii) in the definition of common divisor $f \mid d$. Use induction to show that f divides r_2, \ldots, r_{n-1} . In order to prove the base case note that if $f \mid a$ and $f \mid b$ then

$$a = bq_1 + r_1$$

$$b = r_1q_2 + r_2 \implies kf = lfq_1 + r_r$$

$$lf = r_1q_2 + r_2 \implies lf = (kf - lfq_1)q_2 + r_2$$

$$\implies r_2 = f(f - kq_2 + lq_1q_2) \implies f \mid r_2\checkmark$$

By the inductive hypothesis assume $f \mid r_2, f \mid r_3, \ldots, f \mid k$ and

$$r_{k-2} = r_{k-1}q_k + r_k$$

is true. So by the inductive hypothesis $r_{k-2} = rf$, $r_{k-1} = sf$ and $r_k = tf$, therefore substituting

$$tf = (rf - sfq_k)q_{k+1} + r_{k+1} \implies r_{k+1} = f(t - rq_{k+1} + sq_kq_{k+1}) \implies f \mid r_{k+1}$$

and this completes the existence part of the proof. Now in order to establish uniqueness assume there exist $d_1, d_2 \in \mathbb{Z}$ that are both greatest common divisors of $a, b \in \mathbb{Z}$. By definition of common divisor if $d_1 \mid a$ and $d_1 \mid b$, then $d_1 \mid d_2$; likewise, if $d_2 \mid a$ and $d_2 \mid b$, then $d_2 \mid d_1$ which implies

$$d_2 = kd_1$$
 and $d_1 = jd_2 \implies d_1 = j(kd_1)$

Since $d_1, d_2, j, k \in \mathbb{Z}$ then j = k = 1 and $d_1 = d_2$ which proves uniqueness.

Example 2.4. Find the gcd(391, 272)

$$391 = 272(1) + 119 \implies 272 = 119(2) + 34 \implies 119 = 34(3) + 17 \implies 34 = 17(2)$$

$$gcd(391, 272) = 17$$

Question for next class: Let $F_0 = 1$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$

- 1. What is the $gcd(F_n, F_{n-1})$ for some fixed n.
- 2. How many steps does it take using Euclid's Algorithm in terms of n.