Math 490 - Spring 2016
Midterm Practice

In mathematics you don’t understand things. You just get used to them.
— John von Neumann

Practice:

(1) Find the ordinary generating function for the following sequences:
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Solving for f(z):
1
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(2) Find a generating function for the number of Dyck-Path-like walks that consist either

of

e Up-Steps of slope 1, (length 1)

e Half-Up-Steps of slope 1/2 (length 2)

e Down-Steps of slope -1 (Length 1)
Hint: The sequence begins: 0,1,1,2,4,7... Draw pictures!

Each path begins with either an up step of slope 1 or an up step of slope 1/2. Then
just like with Dyck paths it must at some point return to the x-axis with a down step.

Thus each path can be counted by either:
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or the empty path. Thus
p(z) =1+ 2%p(x)? + 2°p(x)?.
Solving for p(z), we get
0=1-p(x)+ (2° + 2%)p(z)?
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As usual, we take the root corresponding to the minus sign to obtain a generating
function.
For a fixed integer k > 0, find the exponential generating function for {(Z) }:io

Since (Z) = 0 when n < k, we get that the exponential generating function for this

sequence is
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Suppose f(n) is a function that satisfies n* = Z f(d). Use Mébius inversion to find a
dln
formula for f(n), and use it to compute the values of f(n) for 1 <n <6.

By Mobius inversion,
f(n) d§n w7

Using this we compute f(1) =1, f(2) =3, f(3) =8, f(4) =14, f(5) = 24, f(6) = 24.



