
Math 490 - Spring 2016

Midterm Practice

In mathematics you don’t understand things. You just get used to them.

— John von Neumann

Practice:

(1) Find the ordinary generating function for the following sequences:
(a) an = 4

∞
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∞
∑
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=
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∑
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(c) an = 3n
∞
∑

n=0

(3x)n =
1

1− 3x

(d) an = an−1 + 2an−2, a0 = 1, a1 = 1.

f(x) =
∞
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∞
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∞
∑
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∞
∑
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∞
∑
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∞
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= 1 + x+ x(f(x)− 1) + 2x2f(x)

= 1 + xf(x) + 2x2f(x)

Solving for f(x):

f(x) =
1

1− x− 2x2

(2) Find a generating function for the number of Dyck-Path-like walks that consist either
of

• Up-Steps of slope 1, (length 1)
• Half-Up-Steps of slope 1/2 (length 2)
• Down-Steps of slope -1 (Length 1)

Hint: The sequence begins: 0,1,1,2,4,7... Draw pictures!
Each path begins with either an up step of slope 1 or an up step of slope 1/2. Then

just like with Dyck paths it must at some point return to the x-axis with a down step.
Thus each path can be counted by either:
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p(x)x x
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p(x)
x2 x

or the empty path. Thus

p(x) = 1 + x2p(x)2 + x3p(x)2.

Solving for p(x), we get

0 = 1− p(x) + (x2 + x3)p(x)2

and so

p(x) =
1±

√
1− 4x2 − 4x3

2x2 + 2x3
.

As usual, we take the root corresponding to the minus sign to obtain a generating
function.

(3) For a fixed integer k ≥ 0, find the exponential generating function for
{(

n

k

)}∞

n=0

Since
(

n

k

)

= 0 when n < k, we get that the exponential generating function for this
sequence is
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∞
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(4) Suppose f(n) is a function that satisfies n2 =
∑

d|n

f(d). Use Möbius inversion to find a

formula for f(n), and use it to compute the values of f(n) for 1 ≤ n ≤ 6.
By Möbius inversion,

f(n) =
∑

d|n

d2µ
(n

d

)

.

Using this we compute f(1) = 1, f(2) = 3, f(3) = 8, f(4) = 14, f(5) = 24, f(6) = 24.


