Math 490 - Fall 2015

Homework 1

Due Febuary 21, 2017
From this proposition it will follow, when arithmetical addition has been defined, that $1+1=2$. The above proposition is occasionally useful.

- Alfred North Whitehead and Bertrand Russell on page 379 of Principia Mathematica

Turn in:

(1) (a) Find a closed form for the generating function for the sequence $a_{0}=0, a_{n}=\frac{1}{n}$, $n \geq 1$.
(b) The nth harmonic number is $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$. Find a closed form for the generating function for the harmonic numbers.
(2) Let $F(x)$ be the generating function for the sequence $a_{0}=1, a_{2 n}=a_{n}+a_{n-1}, a_{2 n+1}=a_{n}$.
(a) Write out the first ten terms of this sequence.
(b) Show that

$$
F(x)=\left(1+x+x^{2}\right) F\left(x^{2}\right) .
$$

(3) Consider the Perrin sequence, which we can define recursively as follows: set $r_{0}=3, r_{1}=$ $0, r_{2}=2$, and for all $n \geq 3$ define $r_{n}=r_{n-2}+r_{n-3}$.
Let $R(x)$ denote the generating function $R(x)=\sum_{n=0}^{\infty} r_{n} x^{n}$ for the Perrin sequence.
(a) Prove that $R(x)=\frac{3-x^{2}}{1-x^{2}-x^{3}}$.
(b) Prove that $r_{n}=r_{n-1}+r_{n-5}$, for all $n \geq 5$.
(4) Here's a fun/strange fact: if p is a prime number, then p divides r_{p}, the p-th Perrin number. We prove this in this problem, using the techniques of generating functions, as follows:
(a) Define $Q(x)=R(x)-3$; that is, $Q(x)$ is the same power series as $R(x)=\sum_{n=0}^{\infty} r_{n} x^{n}$, except we make the constant term zero for calculational convenience.
Show that

$$
Q(x)=(-x) \cdot \frac{d}{d x}\left(\ln \left(1-x^{2}-x^{3}\right)\right)
$$

(b) Show that if $Q(x)$ is any power series $\sum_{n=0}^{\infty} r_{n} x^{n}$, then

$$
\left.\frac{d^{p}}{d x^{p}}(Q(x))\right|_{x=0}=p!\cdot r_{p}
$$

(c) By using the product rule on the equation from part a, show that
$\left.\frac{d^{p}}{d x^{p}}(Q(x))\right|_{x=0}=(-p) \cdot(p!) \cdot\left(\right.$ the coefficient of x^{p} in the Taylor series for $\left.\ln \left(1-x^{2}-x^{3}\right)\right)$.
(d) Using the above, prove that p is a factor of r_{p} whenever p is prime. (Hint: the coefficient of x^{p} in the Taylor series for $\ln \left(1-x^{2}-x^{3}\right)$ may be a fraction, however use the generating function from problem 1. a to see that the coefficient on x^{p} is a sum of fractions whose denominators are all less than p, and so this fraction can't have a p in the denominator.)

