LECTURE NOTES 3/7/17

ABIOLA OYEBO

Let A, B, and C be non-disjoint sets. We need to find a way to count the size of $A \cup B \cup C$ without counting things in multiple sets more than once. To do this, we subtract off things that show up multiple times.

$$
|A \cup B \cup C|=(|A|+|B|+|C|)-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|
$$

This is generalized by:

Principle of Inclusion Exclusion

If $A=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$, then the size of A is

$$
|A|=\sum_{i=1}^{n} \sum_{\substack{J \subset\{1,2, \ldots, n\} \\|J|=i}}(-1)^{i+1}\left|\bigcap_{j \in J} A_{j}\right|
$$

Counting Derangements

Suppose n people leave their hats on a table, and then everyone takes a hat. What is the probability that no one gets their own hat back?

We can describe this situation using permutations. Let a permutation σ denote which hat the i th person got.

Example. $\sigma=3214$
Both person 2 and person 4 got their own hats. Persons 1 and 3 swapped hats.
Every permutation of length n corresponds to a way the hats could be mixed up.
The probability that no one gets their own hat is

$$
\frac{\# \text { of permutations where } \sigma(i) \neq i \forall i}{\# \text { of permutations of length } n}
$$

A derangement is a permutation σ where $\sigma(i)=i \forall i$.
We need to count the derangements of n.
Let $A_{i}=\{$ permutations of length n where $\sigma(i)=i\}$,
$D_{n}=\{$ derangents of $n\}$,
$S_{n}=\{$ permutations of length $n\}$, and

$$
A=A_{1} \cup A_{2} \cup \ldots \cup A_{n}
$$

Then,

$$
D_{n}=S_{n} \backslash A \quad \text { and } \quad\left|D_{n}\right|=n!-|A|
$$

$\left|A_{i}\right|=(n-1)!$ since we fix i and permute the other $n-1$.
$A_{i} \cap A_{j} \mid=(n-2)$! since we fix i and j and permute the other $n-2$.
In general,

$$
\left|\bigcap_{\substack{j \in J \\|J|=k}} A_{j}\right|=(n-k)!
$$

Apply the principle of inclusion exclusion

$$
\begin{aligned}
|A| & =\sum_{i=1}^{n} \sum_{\substack{J \subset\{1,2, \ldots, n\} \\
|J|=i}}(-1)^{i+1}\left|\bigcap_{j \in J} A_{j}\right| \\
& =\sum_{i=1}^{n} \sum_{\substack{J \subset\{1,2, \ldots, n\} \\
|J|=i}}(-1)^{i+1}(n-i)! \\
& =\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i}(n-i)! \\
& =\sum_{i=1}^{n}(-1)^{i+1} \frac{n!}{i!}
\end{aligned}
$$

So,

$$
\begin{aligned}
\left|D_{n}\right| & =n!-n!\sum_{i=1}^{n} \frac{(-1)^{i+1}}{i!} \\
& =n!\sum_{i=1}^{n} \frac{(-1)^{i}}{i!} \\
& =n!\left(\frac{1}{0!}-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots+\frac{(-1)^{n}}{n!}\right)
\end{aligned}
$$

Therefore, the probability that no one gets their own hat is

$$
\begin{aligned}
\text { Probablility } & =\frac{\left|D_{n}\right|}{\left|S_{n}\right|}=\frac{n!\sum_{i=1}^{n} \frac{(-1)^{i}}{i!}}{n!}=\sum_{i=1}^{n} \frac{(-1)^{i}}{i!} \\
& \approx e^{-1} \approx 0.368 \text { when } n \text { is large }
\end{aligned}
$$

Exponential Generating Function for Permutations

A permutation of n is a sequence of labelled single vertices.
Example. $\sigma=24135$
The number in the i th position can be seen as the label of the i th single vertex.
The Exponential generating function for single vertices is just

$$
V(x)=x
$$

since there is only 1 vertex and it has size 1 .
Since a permutation is a sequence of labelled single vertices, the EGF for permutations is

$$
\begin{aligned}
P(x) & =\left(1+V(x)+V(x)^{2}+V(x)^{3}+\ldots\right) \\
& =\frac{1}{1-V(x)} \\
& =\frac{1}{1-x}
\end{aligned}
$$

Another way to write a permutation is in cycle notation.
For example, consider the permutation $\sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6\end{array}\right)$.
In cycle notation, $\sigma=(1354)(2)(6)$.

A permutation is a set of cycles. The order of the cycles doesn't matter.
We need to count cycles of length n.
Cycle $c=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)$, where the a_{i} 's are numbers from 1 to n.
Cycles stay the same when rotated.
Example. $\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)=\left(\begin{array}{llll}2 & 1 & 3 & 4\end{array}\right)=\left(\begin{array}{llll}4 & 2 & 1 & 3\end{array}\right)=\left(\begin{array}{llll}3 & 4 & 2 & 1\end{array}\right)$
By fixing the choice of 1 in the 1 st position, we see that there are $(n-1)!$ cycles of length n. The EGF for cycles is

$$
\begin{aligned}
C(x) & =\sum_{n=1}^{\infty} \frac{(n-1)!}{n!} x^{n} \\
& =\sum_{n=1}^{\infty} \frac{1}{n} x^{n} \\
& =\ln \left(\frac{1}{1-x}\right) \\
& \quad 3
\end{aligned}
$$

A permutation is a labelled set of cycles, so the Exponential generating function for permutations is

$$
\begin{aligned}
P(x) & =\left(1+C(x)+\frac{C(x)^{2}}{2!}+\frac{C(x)^{3}}{3!}+\ldots\right) \\
& =\exp (C(x)) \\
& =\exp \left(\ln \left(\frac{1}{1-x}\right)\right) \\
& =\frac{1}{1-x}
\end{aligned}
$$

Counting Derangements using EGFs

A derangement is a permutation with no cycles of length 1 . In other words, it is a set of cycles all of length greater than 1.
The EGF for derangements is

$$
\begin{aligned}
D(x) & =\exp (C(x)-x) \\
& =\exp \left(\ln \left(\frac{1}{1-x}\right)-x\right) \\
& =\frac{e^{-x}}{1-x}
\end{aligned}
$$

Recall: If $f(x)$ and $g(x)$ are EGF's,

$$
f(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n} \quad \text { and } \quad g(x)=\sum_{n=0}^{\infty} \frac{b_{n}}{n!} x^{n}
$$

Then,

$$
\left[x^{n}\right] f(x) g(x)=\sum_{n=0}^{n}\binom{n}{i} a_{i} b_{n-i}
$$

Let $f(x)=e^{-x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}$ and $g(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$. Then,

$$
\begin{aligned}
{\left[x^{n}\right]\left(e^{-x}\right)\left(\frac{1}{1-x}\right) } & =\sum_{n=0}^{n}\binom{n}{i}(-1)^{i}(n-i)! \\
& =n!\sum_{i=1}^{n} \frac{(-1)^{i}}{i!}
\end{aligned}
$$

