1 Product of Two Labeled Structures

α is a labeled structure of size 1 .
β is a labeled structure of size k .
$\left(\alpha^{*} \beta\right)=\left\{\left(\alpha^{\prime}, \beta^{\prime}\right) \mid \alpha^{\prime}\right.$ and β^{\prime} are labeled with the numbers $1,2, \ldots, 1+\mathrm{k}$, and α^{\prime} is a relabeling of α, and β ' is a relabeling of β.\}

2 Labeled Rooted Plane Trees

Question: If α has size k and β has size 1 , how many elements are in (α^{*} β)?

Answer: There are $\binom{k+l}{k}$ elements in $\left(\alpha^{*} \beta\right)$.
Say that A is a collection of labeled objects with exponential generating function $\mathrm{f}(\mathrm{x})$, and B is another collection with exponential generating function $\mathrm{g}(\mathrm{x})$.

Let $\bigcup_{\alpha \in A, \beta \in B}\left[\alpha^{*} \beta\right]$.

Find the exponential generating function $\mathrm{h}(\mathrm{x})$ for C .
Let $\mathrm{h}(\mathrm{x})=\sum_{n=0}^{\infty} \frac{c_{n}}{n!} x^{n}$

Let $\mathrm{f}(\mathrm{x})=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}$
Let $\mathrm{g}(\mathrm{x})=\sum_{n=0}^{\infty} \frac{b_{n}}{n!} x^{n}$
Every object in C of size n is constructed by taking an α of size k from A and a β from B of size $(\mathrm{n}-\mathrm{k})$. This choice of α and β gives us $\binom{n}{k}$ objects in C.
$C_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}\binom{n}{k}$, the number of objects in C.
a_{k} is the possible $\alpha^{\prime} \mathrm{s}, b_{n-k}$ is the possible $\beta^{\prime} \mathrm{s},\binom{n}{k}$ is the total number of things.]

Now, $\mathrm{h}(\mathrm{x})=\sum_{n=0}^{\infty} \frac{c_{n}}{n!} x^{n}$
$=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\binom{n}{k}\right) \frac{x^{n}}{n!}$
$=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left(\frac{a_{k}}{k!}\right)\left(\frac{b_{n-k}}{(n-k)!}\right) \frac{n!x^{n}}{n!}\right.$
$=\left(\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}\right)\left(\sum_{n=0}^{\infty} \frac{b_{n}}{n!} x^{n}\right)$
So, $h(x)=f(x) g(x)$.

2.1 Count Labeled Rooted Plane Trees

Recall: (Unlabeled) Rooted Plane Trees

- Start with a root
- Any rooted plane tree consists of a root along with a sequence of rooted plane trees that get hung from the root in order.
- So, $\mathrm{p}(\mathrm{x})=x\left(1+p(x)+p(x)^{2}+p(x)^{3}+\ldots\right)=x\left(\frac{1}{1-p(x)}\right)$

This same construction works for the exponential generating function for labeled rooted plane trees. But same function for both.

Question: How many labeled rooted plane trees are there?

$$
\begin{aligned}
& p(x)(1-p(x))=x \\
& p(x)-p(x)^{2}=x \\
& 0=p(x)^{2}-p(x)+x \\
& p(x)=\sum_{n=1}^{\infty} c_{n-1} x^{n}
\end{aligned}
$$

Answer: $n!\left[x^{n}\right] p(x)=n!c_{n-1}=\frac{n!}{n}\left(\begin{array}{c}\binom{(n-1)}{(n-1)}\end{array}\right)=\frac{(2 n-2)!}{(n-1)!}$

Question: What if we remove the "plane" requirement? (Labeled Rooted Trees)

- Construction for labeled rooted trees is similar.
- Start with a root.
- Below it attach an unordered set of labeled rooted plane trees.

Let $\mathrm{R}(\mathrm{x})=$ exponential generating function of labeled rooted trees.
So, $\mathrm{R}(\mathrm{x})=x\left(1+R(x)+\frac{R(x)^{2}}{2!}+\frac{R(x)^{3}}{3!}+\ldots+\frac{R(x)^{n}}{n!}=x e^{R(x)}\right.$
(The $n!$ accounts for swapping n number of trees that are the same.)

2.2 Lagrange Inversion Formula

Suppose $f(x)$ and $g(x)$ are formal power series and $g(0)=1$. Suppose $f(x)=$ $x(g(f(x)))$.

Then,
$\left[x^{n}\right] f(x)=\frac{1}{n}\left[u^{n-1}\right](g(u))^{n}$.

Let's apply this formula to labeled rooted trees. In this case, $\mathrm{F}(\mathrm{x})=\mathrm{R}(\mathrm{x})$ and $\mathrm{G}(\mathrm{x})=e^{x}$.

So,
$x^{n} R(x)=\frac{1}{n}\left[u^{n-1}\right]\left(e^{u}\right)^{n}=\frac{1}{n}\left[u^{n-1}\right] e^{n u}=\frac{1}{n}\left(\frac{n^{n-1}}{(n-1)!}\right)=\frac{n^{n-1}}{n!}$
$\mathrm{R}(\mathrm{x})=\sum_{n=0}^{\infty} \frac{n^{n-1}}{n!} x^{n}$
So, there are n^{n-1} labeled rooted trees of size n .

