Introduction/Review

In the previous lecture, we discussed how, given a recurrence relation, to find the generating function and closed formula of a sequence. This is done using the following algorithm:

- Recurrence Relation to Generating Function

1. Multiply both sides of the recurrence relation by x^{n}
2. Sum both sides for all valid values of n
3. Solve for $\mathrm{A}(\mathrm{x})$, the generating function

- Generating Function to Closed Formula

1. Use the method of partial fractions to find the fraction decomposition of $A(x)$
2. Write $A(x)$ as a sum of known power series
3. The closed form, a_{n}, of the sequence is the coefficient of x^{n} in the constructed summation

Fibonacci Sequence

Given the recurrence relation,

$$
a_{n+2}=a_{n+1}+a_{n} ; a_{n}=n
$$

find the generating function and closed formula of the Fibonacci sequence.

Recurrence Relation to Generating Function

Using the previously stated algorithm, we know

$$
\sum_{n=0}^{\infty} a_{n+2} x^{n}=\sum_{n=0}^{\infty}\left(a_{n+1}+a_{n}\right) x^{n}=\sum_{n=0}^{\infty} a_{n+1} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Left Hand Side

Using $m=n+2$:

$$
\begin{aligned}
& \sum_{m=2}^{\infty} a_{m} x^{m-2} \\
& \quad=\frac{1}{x^{2}} \sum_{m=2}^{\infty} a_{m} x^{m} \\
& \quad=\frac{1}{x^{2}}\left[\sum_{m=0}^{\infty} a_{m} x^{m}-0-x^{1}\right] \\
& \quad=\frac{1}{x^{2}}\left[\sum_{m=0}^{\infty} a_{m} x^{m}-x\right] \\
& \quad=\frac{1}{x^{2}}[A(x)-x]
\end{aligned}
$$

Right Hand Side

We know that $\sum_{n=0}^{\infty} a_{n} x^{n}=A(x)$.
Using $m=n+1$:

$$
\begin{aligned}
\sum_{m=1}^{\infty} & a_{m} x^{m-1}+A(x) \\
& =\frac{1}{x} \sum_{m=1}^{\infty} a_{m} x^{m}+A(x) \\
& =\frac{1}{x}\left[\sum_{m=0}^{\infty} a_{m} x^{m}-0\right]+A(x) \\
& =\frac{1}{x} A(x)+A(x)
\end{aligned}
$$

Solve for $A(x)$

$$
\begin{aligned}
& \frac{1}{x^{2}}[A(x)-x]=\frac{1}{x} A(x)+A(x) \\
& A(x)-x=x A(x)+x^{2} A(x) \\
& A(x)\left(1-x-x^{2}\right)=x
\end{aligned}
$$

$\boldsymbol{A}(\boldsymbol{x})=\frac{\boldsymbol{x}}{\boldsymbol{1 - x}-\boldsymbol{x}^{2}}$ is the generating function for the Fibonacci sequence.

Generating Function to Closed Formula

Find the fraction decomposition of $\mathrm{A}(\mathrm{x})$ using the method of partial fractions, and write the denominator in the form $(1-\alpha x)(1+\beta x)$.

$$
\begin{aligned}
A(x) & =\frac{x}{(1-\alpha x)(1+\beta x)}=\frac{P}{(1-\alpha x)}+\frac{Q}{(1+\beta x)} \\
x & =P(1+\beta x)+Q(1-\alpha x)
\end{aligned}
$$

Using $x=\frac{1}{\alpha}=\beta$,
Using $x=\frac{-1}{\beta}=-\alpha$,
$\beta=P\left(1+\beta^{2}\right)$
$-\alpha=Q\left(1+\alpha^{2}\right)$
$=P(1+1-\beta)$ because $\beta^{2}=1-\beta \quad=Q(1+1+\alpha)$ because $\alpha^{2}=1+\alpha$
$=P(2-\beta)$
$=Q(2+\alpha)$
$P=\frac{\beta}{2-\beta}$
$Q=\frac{-\alpha}{2+\alpha}$
Find α and β using

$$
\begin{equation*}
(1-\alpha x)(1+\beta x)=1-x-x^{2}=-\left(x-x_{1}\right)\left(x-x_{2}\right) . \tag{*}
\end{equation*}
$$

Apply Quadratic Formula to (*):

$$
\begin{aligned}
x & =\frac{-1 \pm \sqrt{5}}{2}, \text { so } x_{1}=\frac{-(1+\sqrt{5})}{2} \text { and } x_{2}=\frac{-1+\sqrt{5}}{2} \\
(*) & =-\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x-\frac{-1+\sqrt{5}}{2}\right) \\
& =\left(\frac{1+\sqrt{5}}{2}+x\right)\left(\frac{\sqrt{5}-1}{2}-x\right) \\
& =\left(1-x / \frac{\sqrt{5}-1}{2}\right)\left[1+\left(\frac{\sqrt{5}-1}{2}\right) x\right] \\
& =\left(1-\left(\frac{\sqrt{5}+1}{2}\right) x\right)\left(1+\left(\frac{\sqrt{5}-1}{2}\right) x\right),
\end{aligned}
$$

where $\frac{\sqrt{5}+1}{2}=\alpha$ and $\frac{\sqrt{5}-1}{2}=\beta$.

Substitute values for α and β into P and Q :
$P=\frac{\beta}{2-\beta} \quad Q=\frac{-\alpha}{2+\alpha}$
$2-\beta=2-\frac{\sqrt{5}-1}{2}=\sqrt{5} \beta \quad 2+\alpha=2+\frac{\sqrt{5}+1}{2}=\sqrt{5} \alpha$
$P=\frac{\beta}{\sqrt{5} \beta}=\frac{1}{\sqrt{5}} \quad Q=\frac{-\alpha}{\sqrt{5} \alpha}=\frac{-1}{\sqrt{5}}$
Write $\mathrm{A}(\mathrm{x})$ as a sum of known power series to find the closed formula, a_{n} :

$$
\begin{aligned}
A(x)=\frac{P}{(1-\alpha x)}+\frac{Q}{(1+\beta x)} & =\frac{1 / \sqrt{5}}{(1-\alpha x)}+\frac{-1 / \sqrt{5}}{(1+\beta x)} \\
& =\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} \alpha^{n} x^{n}-\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty}(-\beta)^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left(\frac{\alpha^{n}}{\sqrt{5}}-\frac{(-\beta)^{n}}{\sqrt{5}}\right) x^{n}
\end{aligned}
$$

so $a_{n}=\frac{1}{\sqrt{5}}\left(\alpha^{n}-(-\beta)^{n}\right)$.
$a_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{\sqrt{5}+1}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]$ is the closed formula for the Fibonacci sequence.

The Ring of Formal Power Series

Definition: For every sequence $\left(a_{n}\right)_{n \geq 0}$ with $a_{n} \in \mathbb{Q}$ (or $\left.\mathbb{R}\right)$, define

$$
A(x)=\sum_{n \geq 0} a_{n} x^{n}
$$

We denote this set $\mathbb{Q}[[x]]$.
For two power series, we define

$$
\begin{aligned}
& A(x)+B(x)=\sum_{n \geq 0}\left(a_{n}+b_{n}\right) x^{n} \\
& A(x) \cdot B(x)=\sum_{n \geq 0} C_{n} x^{n}
\end{aligned}
$$

where

$$
C_{n}=\sum_{\substack{i+j=n \\ i, j \geq 0}} a_{i} b_{j}=\sum_{j=0}^{n} a_{j} b_{n-j}=\sum_{j=0}^{n} a_{n-j} b_{j} .
$$

We say that $\sum_{n \geq 0} b_{n} x^{n}$ is the multiplicative inverse $\left(\sum_{n \geq 0} a_{n} x^{n}\right)^{-1}$ if

$$
\left(\sum_{n \geq 0} a_{n} x^{n}\right)\left(\sum_{n \geq 0} b_{n} x^{n}\right)=1+0 x+0 x^{2}+\ldots=1
$$

