Lecture Notes February 7th, 2017

Kelly Coffey

Guest Lecturer: Dr. Van Zwam
A sequence is a list of numbers. But, how do we specify a list of numbers in a meaningful way?

We can:

- List the numbers out
- Example: 2, 3, 4, 5, 8, 9, 11, 13, 16, \ldots
- These are the prime powers so they are either prime numbers or they are powers of primes
- We can write formulas for the sequences
- We can name the elements (i.e. $a_{0}, a_{1}, a_{2}, \ldots$)

The best ways to do it are:

1. Closed Form:

- A function of n like $a_{n}=3^{n}-n^{2}+4$
- This is ideal for a sequence

2. Recurrence Relations:

- Example: $a_{n+2}=a_{n+1}+a_{n}$ where $a_{0}=1$ and $a_{1}=1$
- Thus, $a_{2}=a_{1}+a_{0}=2$ and $a_{3}=a_{2}+a_{1}=3$

3. Generating Functions:

- These are called "formal power series"
- The list of numbers are the coefficients
- We are not concerned about convergence or radii of convergence
- Example: $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots=\sum_{n=0}^{\infty} a_{n} x^{n}$

Advantages and Disadvantages of Generating Functions (GF):

- (+) Access to tools from algebra, calculus, etc.
- (+) Generally compact
- (-) It takes work to get the coefficients; you must evaluate your Taylor series
- (+) We can sometimes find a closed form from it

List of known GF we have already found in other examples:

- $1+x+x^{2}+x^{3}+x^{4}+\ldots=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$
- $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-a x}$

Today, we will start with a recurrence relation and turn it into a GF. Then we will turn the GF into a closed formula.

Example 1: A sequence defined by $a_{n}=2 a_{n}+1$ where $a_{0}=0$
Write down the first few terms: $0,1,3,7,15, \ldots$ We want to find the GF:

$$
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

GOAL 1: We have a trick to turn a recurrence relation into a GF:

- STEP 1: Multiply both sides by x^{n} so we have

$$
\begin{gathered}
a_{n+1}=2 a_{n}+1 \\
a_{n+1} x^{n}=\left(2 a_{n}+1\right) x^{n}
\end{gathered}
$$

- STEP 2: Sum for all valid values of n

$$
\sum_{n=0}^{\infty} a_{n+1} x^{n}=\sum_{n=0}^{\infty}\left(2 a_{n}+1\right) x^{n}
$$

- STEP 3: Solve for $A(x)$

$$
R H S=2 \sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=0}^{\infty} x^{n}=2 A(x)+\frac{1}{1-x}
$$

Divide and multiply by x to make the index and exponent match on the LHS

$$
L H S=\frac{1}{x} \sum_{n=0}^{\infty} a_{n+1} x^{n+1}
$$

We use a change of variable here to let $m=n+1$

$$
=\frac{1}{x} \sum_{m=1}^{\infty} a_{m} x^{m}
$$

We lost the first term a_{0}, so we add and subtract it

$$
=\frac{1}{x}\left(\sum_{m=1}^{\infty} a_{m} x^{m}+a_{0}-a_{0}\right)=\frac{1}{x}\left(\sum_{m=0}^{\infty} a_{m} x^{m}-a_{0}\right)=\frac{1}{x}\left(A(x)-a_{0}\right)
$$

We have that $a_{0}=0$ and now we can solve for $A(x)$

$$
\begin{gathered}
\frac{1}{x}\left(A(x)-a_{0}\right)=2 A(x)+\frac{1}{1-x} \\
A(x)-a_{0}=2 x A(x)+\frac{x}{1-x} \\
(1-2 x) A(x)-0=\frac{x}{1-x} \\
A(x)=\frac{x}{(1-x)(1-2 x)}
\end{gathered}
$$

GOAL 2: Turn a GF into a closed formula (we will used known power series and partial fractions

$$
\begin{gathered}
\frac{x}{(1-x)(1-2 x)}=\frac{P}{1-x}+\frac{Q}{1-2 x} \\
x=(1-2 x) P+(1-x) Q
\end{gathered}
$$

We can try substitution for easy values:
For $\mathrm{x}=1$:

$$
\begin{aligned}
& 1=-P \\
& P=-1
\end{aligned}
$$

For $\mathrm{x}=\frac{1}{2}$:

$$
\begin{gathered}
\frac{1}{2}=\frac{1}{2} Q \\
Q=1
\end{gathered}
$$

So

$$
\begin{gathered}
A(x)=\frac{-1}{1-x}+\frac{1}{1-2 x} \\
A(x)=\frac{-1}{1-x}+\frac{1}{1-2 x} \\
A(x)=-\sum_{n=0}^{\infty} x^{n}+\sum_{n=0}^{\infty} 2^{n} x^{n}=\sum_{n=0}^{\infty}\left(2^{n}-1\right) x^{n}
\end{gathered}
$$

So we have that

$$
a_{n}=2^{n}-1
$$

There is also a little trick that we can do and obtain another known GF. Consider

$$
\sum_{n=1}^{\infty} n x^{n-1}=1+2 x+3 x^{2}+4 x^{3}+\ldots
$$

This is just the derivatives:

$$
\frac{d}{d x} x+\frac{d}{d x} x^{2}+\frac{d}{d x} x^{3}+\frac{d}{d x} x^{4}+\ldots=\sum_{n=1}^{\infty} \frac{d}{d x}\left(x^{n}\right)=\frac{d}{d x}\left(\sum_{n=1}^{\infty} x^{n}\right)
$$

We know $x^{0}=1$ and that $\frac{d}{d x} 1=0$, so we see that

$$
\frac{d}{d x}\left(\sum_{n=1}^{\infty} x^{n}\right)=\frac{d}{d x}\left(\sum_{n=0}^{\infty} x^{n}\right)=\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}}
$$

So now we have 3 known generating functions:

- $1+x+x^{2}+x^{3}+x^{4}+\ldots=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$
- $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-a x}$
- $1+2 x+3 x^{2}+4 x^{3}+\ldots=\sum_{n=1}^{\infty} n x^{n}=\frac{1}{(1-x)^{2}}$

Example 2: A sequence defined by $a_{n+1}=2 a_{n}+n$ where $a_{0}=1$

- Step 1: Multiply by x^{n} :

$$
\begin{gathered}
a_{n+1}=2 a_{n}+n \\
a_{n+1} x^{n}=\left(2 a_{n}+n\right) x^{n}
\end{gathered}
$$

- Step 2: Summation

$$
\sum_{n=0}^{\infty} a_{n+1} x^{n}=\sum_{n=0}^{\infty}\left(2 a_{n}+n\right) x^{n}
$$

- Step 3: Solve for $\mathrm{A}(\mathrm{x})$
- LHS: Make the index and exponent match by multiplying and dividing by x and then adding and subtracting a_{0}

$$
L H S=\frac{1}{x} \sum_{n=0}^{\infty} a_{n+1} x^{n}=\frac{1}{x}\left(A(x)-a_{0}\right)
$$

- RHS: Separate and then multiply and divide by x where necessary

$$
2 \sum_{n=0}^{\infty} a_{n} x^{n}+x \sum_{n=0}^{\infty} n x^{n} \frac{1}{x}=2 A(x)+x \sum_{n=0}^{\infty} n x^{n-1}
$$

- We know if $n=0$, then the first term will vanish and we see:

$$
2 A(x)+x \sum_{n=0}^{\infty} n x^{n-1}=2 A(x)+x \sum_{n=1}^{\infty} n x^{n-1}=2 A(x)+\frac{x}{(1+x)^{2}}
$$

- All together we see:

$$
\begin{gathered}
\frac{1}{x}\left(A(x)-a_{0}\right)=2 A(x)+\frac{x}{(1+x)^{2}} \\
\frac{1}{x}(A(x)-1)=2 A(x)+\frac{x}{(1+x)^{2}} \\
(1-2 x) A(x)=1+\frac{x^{2}}{(1-x)^{2}} \\
A(x)=\frac{1-2 x+2 x^{2}}{(1-2 x)(1-x)^{2}}
\end{gathered}
$$

- By partial fractions, we see:

$$
\frac{1-2 x+2 x^{2}}{(1-2 x)(1-x)^{2}}=\frac{P}{(1-x)^{2}}+\frac{Q}{(1-x)}+\frac{R}{(1-2 x)}
$$

By substituting, we see that $P=-1, Q=0, R=2$. So,

$$
A(x)=\frac{-1}{(1-x)^{2}}+\frac{2}{1-2 x}=-\sum_{n=1}^{\infty} n x^{n-1}+2 \sum_{n=1}^{\infty} 2^{n} x^{n}
$$

- To write this generating function as one formula, we can use a change of variable for $m=n-1$.

$$
-\sum_{m=0}^{\infty}(m+1) x^{m}+\sum_{n=0}^{\infty} 2^{n+1} x^{n}
$$

- Use a change of variables again for $m=n$ and we see:

$$
\sum_{n=0}^{\infty}\left(-n-1+2^{n+1}\right) x^{n}
$$

- Therefore, $a_{n}=2^{n+1}-n-1$

Example 3: Try this one on your own: $a_{n+2}=a_{n+1}+12 a_{n}$ where $a_{0}=3$ and $a_{1}=5$

