Senior Seminar Notes

Claudia Gomes

March 1, 2017

1 Homework Solution

Perrin Sequence: $a_{0}=3, a_{1}=0, a_{2}=2, a_{3}=3, a_{4}=2, a_{5}=5, a_{6}=5, a_{7}=7, a_{8}=10, a_{9}=$ $12, \ldots, a_{p}$. a_{p} is always divisble by p . If n divides a_{n}, but n is not prime, then n is called a Perrin Pseodoprimel smallest example is 600,000 .
(a) Define $\mathrm{Q}(\mathrm{x})=\mathrm{R}(\mathrm{x})-3$; that is, $\mathrm{Q}(\mathrm{x})$ is the same power series as $R(x)=\sum_{n}^{\infty} r_{n} x^{n}$. Show that $Q(x)=(-x) * \frac{d}{d x} *\left(\ln \left(1-x^{2}-x^{3}\right)\right.$.
$R(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the generating function for Perrin Sequence.
$Q(x)=R(x)-3$
$Q(x)=\frac{3-x 62}{1-x^{2}-x^{3}}-3=\frac{2 x^{2}+3 x^{3}}{1-x^{2}-x^{3}}$
$-x \frac{d}{d x}\left(\left(\operatorname{Ln}\left(1-x^{2}-x^{3}\right)\right)=\frac{2 x^{2}+3 x^{3}}{1-x^{2}-x^{3}}\right.$
As you can see $Q(x)=-x \frac{d}{d x}\left(\left(\operatorname{Ln}\left(1-x^{2}-x^{3}\right)\right)\right.$
(b) Show that if $Q(x)$ is any power series $\sum_{n=0}^{\infty} r_{n} x^{n}$, then $\frac{d^{p}}{d x^{p}}[Q(x)]_{x}=p^{1} r_{p}$.
$Q(x)=\sum_{n=0}^{\infty} r_{n} x^{n}=r_{0}+r_{1} x+r_{2} x^{2}+\ldots+r_{p} x^{p}+r\left({ }_{p}+1\right) x(p+1)+\ldots$ taking the p derivative of the polynomial less than $\mathrm{p}=0$ and plugging in $\mathrm{x}=0$, we end up with $p!r_{p_{p}}$
(c) By using the product rule on the equation from part a, show that $\frac{d^{p}}{d x^{p}}[Q(x)]_{x}=(-p) *(p!) *$ (the coefficient of x^{p} in the Taylor Series for $\operatorname{Ln}\left(1-x^{2}-x^{3}\right)$).

$$
\frac{d^{p}}{d x^{p}}(Q(x))=\frac{d^{p}}{d x^{p}}\left[(-x) \frac{d}{d x}\right] \operatorname{Ln}\left(1-x^{2}-x^{3}\right)
$$

$=\frac{\left.d^{(} p-1\right)}{d x(p-1)}\left[(-1) \frac{d}{d x} \operatorname{Ln}\left(1-x^{2}-x^{3}\right)+(-x) \frac{d^{2}}{d x^{2}}\left[\operatorname{Ln}\left(1-x^{2}-x^{3}\right)\right]\right.$
If we keep taking p derivatives we get:
$\left(-p_{1}\right) \frac{d^{p}}{\left.d x_{p}\right)} \operatorname{Ln}\left(1-x^{2}-x^{3}\right)+(-x)+\frac{\left.d^{(} p+1\right)}{d x(p+1)}\left(1-x^{2}-x^{3}\right), \mathrm{x}=0$.
(d) Using the above, p rove that p is a factor of r_{p} whenever p is prime.

We know that $\operatorname{Ln}(1-y)=-\sum_{n=1}^{\infty} \frac{y^{n}}{n}$.
Let $y=x^{2}-x^{3}$, then
$\operatorname{Ln}\left(1-x^{2}-x^{3}\right)=-\sum_{n=1}^{\infty} \frac{\left(x^{2}-x^{3}\right)^{n}}{n}=\frac{x^{2}+x^{3}}{1}+\left(x^{2}+x^{3}\right)^{2} 2+\frac{\left(x^{2}+x^{3}\right)}{3}+\ldots+\frac{\left(x^{2}+x^{3}\right)^{p}}{p}$
Coefficient on x^{p} comes only form terms with denominators less than p in this sum. So r_{p} is a sum of fractions whise denominations are all less than p . So the denominator of r_{p} is not divisble by p .
$p!a_{p}=-p-!r_{p}$
where $p!a_{p}$ is only divisble by p one time and $-p p!r_{p}$, where p divides this side out at least 2 times.

2 Labelled Structures

When we have an object of size n, we are going to five its components labels from 1 up to n. We call the structures different if they are labelled differently.

2.1 Labelled Graphs

Graph with n vertices, label the vertices $1,2, \ldots, n$.

2.2 Labelled Structures

Write down all the ways to write down numbers $1,2,3, \ldots, n$ in a line. These are the permutations of length n .

Example: Say $n=3$, there are 6 permuations.
So there are n ! permutations of length n.
The ordinary generating function for the permutation is $p(x)=\sum_{n=0}^{\infty} n!x^{n}$. This sum as a taylor series converges only at $\mathrm{x}=0$.

Instead, we use an exponential generating function.

3 Exponential Generating Function

We say that the exponential generating function (EGF) of a sequence $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ is $A(x)=$ $\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}$.

The EGF will be much more useful for counting labelled structures. The EFG for the permutations is $Q(x)=\sum_{n=0}^{\infty} \frac{n!}{n!} x^{n}=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$.

If we're counting some set of objects that are labelled and are the disjoint union of two sets with EGFs $A(x)$ and $B(x)$, then the exponential generating funtion for this set is $A(x)+B(x)$.

We would like to make sense of the product $\mathrm{A}(\mathrm{x}) \mathrm{B}(\mathrm{x})$.
If γ is a labelled object of size n (labelled with $1,2, \ldots, n$), we say that γ^{1} is a relabelling of γ.
If γ^{1} is the same as γ as an unlablled structure and the labels in γ^{1} are the same relative order as those in γ.

Product of Two Labelled Structures:
α is a labelled structure if size l.
β is a labelled structure of size k .
$(\alpha)(\beta)=\left(\alpha^{1}, \beta^{1}\right) \mid \alpha^{1}$ and β^{1} and labelled with the numbers $(1,2, \ldots, l+k)$ and α^{1} is a relabelling of α and β^{1} is a relabel

