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1 Homework Solution
Perrin Sequence: a0 = 3, a1 = 0, a2 = 2, a3 = 3, a4 = 2, a5 = 5, a6 = 5, a7 = 7, a8 = 10, a9 =
12, . . . , ap. ap is always divisble by p. If n divides an, but n is not prime, then n is called a Perrin
Pseodoprimel smallest example is 600,000.

(a) Define Q(x)=R(x)-3; that is, Q(x) is the same power series as R(x) =
∑∞

n rnx
n. Show that

Q(x) = (−x) ∗ d
dx ∗ (ln(1− x

2 − x3).
R(x) =

∑∞
n=0 anx

n is the generating function for Perrin Sequence.
Q(x) = R(x)− 3

Q(x) = 3−x62
1−x2−x3 − 3 = 2x2+3x3

1−x2−x3

−x d
dx ((Ln(1− x

2 − x3)) = 2x2+3x3

1−x2−x3

As you can see Q(x) = −x d
dx ((Ln(1− x

2 − x3))
(b) Show that if Q(x) is any power series

∑∞
n=0 rnx

n, then dp

dxp [Q(x)]x = p1rp.
Q(x) =

∑∞
n=0 rnx

n = r0+ r1x+ r2x
2+ . . .+ rpx

p+ r(p+1)x(p+1)+ . . . taking the p derivative
of the polynomial less than p=0 and plugging in x=0, we end up with p!rp

(c) By using the product rule on the equation from part a, show that dp

dxp [Q(x)]x = (−p) ∗ (p!)∗
(the coefficient of xp in the Taylor Series for Ln(1− x2 − x3)).

dp

dxp (Q(x)) = dp

dxp [(−x) d
dx ]Ln(1− x

2 − x3)
= d(p−1)

dx(p−1)
[(−1) d

dxLn(1− x
2 − x3) + (−x) d2

dx2 [Ln(1− x2 − x3)]
If we keep taking p derivatives we get:
(−p1) dp

dxp)
Ln(1− x2 − x3) + (−x) + d(p+1)

dx(p+1) (1− x
2 − x3), x=0.

(d) Using the above, p rove that p is a factor of rp whenever p is prime.
We know that Ln(1-y)=-

∑∞
n=1

yn

n .
Let y = x2 − x3, then
Ln(1− x2 − x3) = −

∑∞
n=1

(x2−x3)n

n = x2+x3

1 + (x2 + x3)22 + (x2+x3)
3 + . . .+ (x2+x3)p

p
Coefficient on xp comes only form terms with denominators less than p in this sum. So rp is a

sum of fractions whise denominations are all less than p. So the denominator of rp is not divisble
by p.

p!ap = −p−!rp
where p!ap is only divisble by p one time and −pp!rp, where p divides this side out at least 2

times.

2 Labelled Structures
When we have an object of size n, we are going to five its components labels from 1 up to n. We
call the structures different if they are labelled differently.

2.1 Labelled Graphs
Graph with n vertices, label the vertices 1, 2, . . . , n.
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2.2 Labelled Structures
Write down all the ways to write down numbers 1, 2, 3, . . . , n in a line. These are the permutations
of length n.

Example: Say n=3, there are 6 permuations.
So there are n! permutations of length n.
The ordinary generating function for the permutation is p(x) =

∑∞
n=0 n!x

n. This sum as a
taylor series converges only at x=0.

Instead, we use an exponential generating function.

3 Exponential Generating Function
We say that the exponential generating function (EGF) of a sequence a0, a1, a2, . . . , an is A(x) =∑∞

n=0
an

n! x
n.

The EGF will be much more useful for counting labelled structures. The EFG for the permu-
tations is Q(x) =

∑∞
n=0

n!
n!x

n =
∑∞

n=0 x
n = 1

1−x .
If we’re counting some set of objects that are labelled and are the disjoint union of two sets

with EGFs A(x) and B(x), then the exponential generating funtion for this set is A(x)+B(x).
We would like to make sense of the product A(x)B(x).
If γ is a labelled object of size n (labelled with 1, 2, . . . , n), we say that γ1 is a relabelling of γ.
If γ1 is the same as γ as an unlablled structure and the labels in γ1 are the same relative order

as those in γ.
Product of Two Labelled Structures:
α is a labelled structure if size l.
β is a labelled structure of size k.
(α)(β) = (α1, β1)|α1andβ1and labelled with the numbers(1, 2, . . . , l + k)andα1is a relabelling ofαandβ1is a relabelling ofβ.
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