Lecture Notes 2/21/17
Matthew Rhoades

Dyck Paths: Paths with up and down steps that start at zero and never cross below the x -axis.

Any Dyck Path can be decomposed as:

Generating function: $C(x)=x \cdot C(x)^{2}+1 \quad$ Need to find a way to solve this.

$$
\begin{array}{ll}
x \cdot C(x)^{2}-C(x)+1=0 & \text { Solve for } C(x) \text { using quadratic formula. } \\
C(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x} & \text { The } \pm \text { is ambiguous, which one do we want? }
\end{array}
$$

Consider $\sqrt{1-4 x}=(1-4 x)^{1 / 2}$. Using the generalized binomial theorem:

$$
(1-4 x)^{1 / 2}=\sum_{n=0}^{\infty}\binom{1 / 2}{n}(-4 x)^{n}=1+\binom{1 / 2}{1}(-4 x)+\ldots
$$

Putting this series in place of $\sqrt{1-4 x}: \quad C(x)=\frac{1+\sqrt{1-4 x}}{2 x}=\frac{1}{x}$
This result does not make sense for generating functions, which count things.
Therefore, we want $C(x)=\frac{1-\sqrt{1-4 x}}{2 x}$, which does not result in negative powers of x.
Next, can we write the closed form of $C(x)=\frac{1-\sqrt{1-4 x}}{2 x}$?

Closed Form for nth Coefficient

$$
\left[x^{n}\right] C(x)=\left[x^{n}\right] \frac{1-\sqrt{1-4 x}}{2 x}, \text { however we want to consider }\left[x^{n}\right] \frac{-\sqrt{1-4 x}}{2 x} \text { and assume } \mathrm{n}>0 \text { : }
$$

$$
\left[x^{n}\right] \frac{-\sqrt{1-4 x}}{2 x}=\left[x^{n+1}\right] \frac{-\sqrt{1-4 x}}{2}=-\frac{1}{2}\left[x^{n+1}\right](1-4 x)^{1 / 2}=-\frac{1}{2}\binom{1 / 2}{n+1}(-4)^{n+1}
$$

Simplifying:

$$
\begin{aligned}
\binom{1 / 2}{n+1} & =\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \cdot \ldots \cdot\left(\frac{1}{2}-n\right)}{(n+1)!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \cdot \ldots \cdot\left(-\frac{2 n-1}{2}\right)}{(n+1)!}=\frac{(-1)^{n}}{2^{n+1}} \frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot(2 n-1)}{(n+1)!} \\
& =\frac{(-1)^{n}}{2^{n+1}} \frac{(2 n-1)!}{(n+1)!\cdot 2 \cdot 4 \cdot 6 \cdots \cdot(2 n-2)}=\frac{(-1)^{n}}{2^{n+1}} \frac{(2 n-1)!}{(n+1)!(n-1)!\left(2^{n-1}\right)}=\frac{(-1)^{n}(2 n-1)!}{4^{n}(n+1)!(n-1)!} \\
(-4)^{n+1} & =(-1)^{n+1} \cdot(4)^{n+1}
\end{aligned}
$$

Then:

$$
\left[x^{n}\right] C(x)=-\frac{1}{2} \frac{(-1)^{n}(2 n-1)!}{4^{n}(n+1)!(n-1)!} \cdot(-1)^{n+1} \cdot(4)^{n+1}=\frac{2(2 n-1)!}{(n+1)!(n-1)!}
$$

Multiplying by $\frac{n}{n}$:

$$
\left[x^{n}\right] C(x)=\frac{2 n(2 n-1)!}{(n+1)!(n-1)!n}=\frac{(2 n)!}{(n+1)!n!}=\frac{1}{(n+1)} \frac{(2 n)!}{n!\cdot n!}=\frac{1}{(n+1)} \cdot\binom{2 n}{n}
$$

The result is called the Catalan number and represents the number of Dyck paths there are that have length $2 n$.

Recall the Catalan numbers: $1,1,2,5,14, \ldots$
Corollary: $\binom{2 n}{n}$ is divisible by $(n+1)$.

Partitions

A partition of the integer n is any way of writing n as a sum of positive integers where order in the sum does not matter.

Partitions of 4:
$4=1+1+1+1=2+2=2+1+1=3+1=4$
There are five partitions for 4 .

Partitions (contd)

Let $P(n)=$ number of partions of n. For example, $P(4)=5$.
To "draw" partitions we use Ferrers diagrams. Write each term in a partition as a row of dots. For example:

Let $P_{k}(n)=$ number of partitions of n into exactly k pieces. For example,

$$
P_{2}(4)=2 \text { and } P_{3}(4)=1
$$

Note that $P(n)=\sum_{k=1}^{n} P_{k}(n)$

Observations

If we take a partition of n and if its smallest term is a 1 we can remove that 1 and get a partition of $(n-1)$.

If we have a partition that does not have any 1 's then we can subtract 1 from every term in the partition.

If the partition has k parts we get a partition of $(n-k)$ into k parts.
$P_{k-1}(n-1)$ is how we make all partitions of n with k parts that end with a 1.
$P_{k}(n-k)$ is how we make all partitions of n into k parts where every term is bigger than 1.

Using $P_{k}(n)=P_{k-1}(n-1)+P_{k}(n-k)$ along with $P_{n}(n)=1$ and $P_{k}(n)=0$ provided $k>n$:

n	$P(n)$	$P_{1}(n)$	$P_{2}(n)$	$P_{3}(n)$	$P_{4}(n)$	$P_{5}(n)$	$P_{6}(n)$
1	1	1	0	0	0	0	0
2	2	1	1	0	0	0	0
3	3	1	1	1	0	0	0
4	5	1	2	1	1	0	0
5	7	1	2	2	1	1	0
6	11	1	3	3	2	1	1

Note: There is no known closed form for $P(n)$.

Generating Function for $P(n)$

$P(x)=\sum_{n=0}^{\infty} P(n) x^{n}$
$\frac{1}{1-x}$ counts ways to write n as a sum of just 1's.
$\frac{1}{1-x^{2}}$ counts ways to write n as a sum of just 2 's.
$\frac{1}{1-x^{k}}$ counts ways to write n as a sum of just k 's.
Multiplying all of these together:

$$
\prod_{k=1}^{\infty} \frac{1}{1-x^{k}}=P(x)
$$

