
Math 490 - Spring 2017
Lecture Notes 2/21/17
Matthew Rhoades

Dyck Paths: Paths with up and down steps that start at zero and never cross below the
x-axis.

Any Dyck Path can be decomposed as:

Generating function: C(x) = x · C(x)2 + 1 Need to find a way to solve this.

x · C(x)2 − C(x) + 1 = 0 Solve for C(x) using quadratic formula.

C(x) = 1±
√
1−4x
2x

The ± is ambiguous, which one do we want?

Consider
√

1− 4x = (1− 4x)1/2. Using the generalized binomial theorem:

(1− 4x)1/2 =
∞∑
n=0

(
1/2
n

)
(−4x)n = 1 +

(
1/2
1

)
(−4x) + ...

Putting this series in place of
√

1− 4x: C(x) = 1+
√
1−4x
2x

= 1
x

This result does not make sense for generating functions, which count things.

Therefore, we want C(x) = 1−
√
1−4x
2x

, which does not result in negative powers of x.

Next, can we write the closed form of C(x) = 1−
√
1−4x
2x

?
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Closed Form for nth Coefficient

[xn]C(x) = [xn]1−
√
1−4x
2x

, however we want to consider [xn]−
√
1−4x
2x

and assume n> 0:

[xn]−
√
1−4x
2x

= [xn+1]−
√
1−4x
2

= −1
2
[xn+1](1− 4x)1/2 = −1

2

(
1/2
n+1

)
(−4)n+1

Simplifying:(
1/2
n+1

)
=

( 1
2
)( 1

2
−1)( 1

2
−2)·...·( 1

2
−n)

(n+1)!
=

( 1
2
)(− 1

2
)(− 3

2
)·...·(− 2n−1

2
)

(n+1)!
= (−1)n

2n+1

1·1·3·5·7·...·(2n−1)
(n+1)!

= (−1)n
2n+1

(2n−1)!
(n+1)!·2·4·6·...·(2n−2) = (−1)n

2n+1

(2n−1)!
(n+1)!(n−1)!(2n−1)

= (−1)n(2n−1)!
4n(n+1)!(n−1)!

(−4)n+1 = (−1)n+1 · (4)n+1

Then:

[xn]C(x) = −1
2

(−1)n(2n−1)!
4n(n+1)!(n−1)! · (−1)n+1 · (4)n+1 = 2(2n−1)!

(n+1)!(n−1)!

Multiplying by n
n
:

[xn]C(x) = 2n(2n−1)!
(n+1)!(n−1)!n = (2n)!

(n+1)!n!
= 1

(n+1)
(2n)!
n!·n! = 1

(n+1)
·
(
2n
n

)
The result is called the Catalan number and represents the number of Dyck paths there
are that have length 2n.

Recall the Catalan numbers: 1, 1, 2, 5, 14, ...

Corollary:
(
2n
n

)
is divisible by (n + 1).

Partitions

A partition of the integer n is any way of writing n as a sum of positive integers where
order in the sum does not matter.

Partitions of 4:

4 = 1 + 1 + 1 + 1 = 2 + 2 = 2 + 1 + 1 = 3 + 1 = 4
There are five partitions for 4.
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Partitions (contd)

Let P (n) = number of partions of n. For example, P (4) = 5.

To “draw” partitions we use Ferrers diagrams. Write each term in a partition as a row of
dots. For example:

4 = 2 + 1 + 1 can be represented as: · ···
Let Pk(n) = number of partitions of n into exactly k pieces. For example,

P2(4) = 2 and P3(4) = 1

Note that P (n) =
n∑

k=1

Pk(n)

Observations

If we take a partition of n and if its smallest term is a 1 we can remove that 1 and get a
partition of (n− 1).

If we have a partition that does not have any 1’s then we can subtract 1 from every term
in the partition.

If the partition has k parts we get a partition of (n− k) into k parts.

Pk−1(n− 1) is how we make all partitions of n with k parts that end with a 1.

Pk(n − k) is how we make all partitions of n into k parts where every term is bigger than
1.

Using Pk(n) = Pk−1(n− 1) + Pk(n− k) along with Pn(n) = 1 and Pk(n) = 0 provided k > n:

n P (n) P1(n) P2(n) P3(n) P4(n) P5(n) P6(n)
1 1 1 0 0 0 0 0
2 2 1 1 0 0 0 0
3 3 1 1 1 0 0 0
4 5 1 2 1 1 0 0
5 7 1 2 2 1 1 0
6 11 1 3 3 2 1 1

Note: There is no known closed form for P (n).
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Generating Function for P (n)

P (x) =
∞∑
n=0

P (n)xn

1
1−x counts ways to write n as a sum of just 1’s.

1
1−x2 counts ways to write n as a sum of just 2’s.

1
1−xk counts ways to write n as a sum of just k’s.

Multiplying all of these together:

∞∏
k=1

1

1− xk
= P (x)


