Math 490 - Spring 2017
Lecture Notes 2/21/17
Matthew Rhoades

Dyck Paths: Paths with up and down steps that start at zero and never cross below the
X-axis.

Any Dyck Path can be decomposed as:
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Generating function: C(z) =z -C(z)*+ 1 Need to find a way to solve this.
r-C(z)>—C(x)+1=0 Solve for C(z) using quadratic formula.

C(z) = % The =+ is ambiguous, which one do we want?

Consider /1 — 4z = (1 — 4x)/2.  Using the generalized binomial theorem:

(1—42)Y2 = 3 (Y3)(—da)" = 1+ (M/2)(—42) + ..

n=0

Putting this series in place of /1 —4da:  C(z) = 4= =1

2z

This result does not make sense for generating functions, which count things.

Therefore, we want C'(z) = 1”2;*496, which does not result in negative powers of x.
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Next, can we write the closed form of C'(z) =
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Closed Form for nth Coeflicient

[2"]C(z) = [2"]*5=2, however we want to consider [2"] =%~ and assume n> 0:

) = [ S = (1 — )2 = (1) ()
Simplifying:
(1/2) _ @®EDGE=2) (3 B)EDED) (=Y (=D 11357 (2n—1)
n+l/) (n+1)! - (n+1)! T o2ontl (n+1)!
(=" (2n—1)! (= (2n—1)! (—1)*(2n—1)!

— 2ntl (n41)1-2:4-6-...-(2n—2) — 27t (n41)l(n—1)I(271) = 47 (n+1)!(n—1)!
(_4)71-1—1 — (_1)n+1 . (4)n+1

Then:

n _ 1 (=1H*(2n-1)! n ntl _ _ 2(2n—1)!
[2"]C(x) = _54”(n+1)!?n—1)! (=D () = (n+1;(n—1)!

Multiplying by 2:

n _ 2n(2n—-1)! _ @2n)! 1 (2n)! _ 1 2n
[SI’J ]C(l’) T D)!n—Dln — mAD! — (n+D) nlal T (nt1) (n)

The result is called the Catalan number and represents the number of Dyck paths there
are that have length 2n.

Recall the Catalan numbers: 1,1,2,5,14, ...

Corollary: (*") is divisible by (n + 1).

Partitions

A partition of the integer n is any way of writing n as a sum of positive integers where
order in the sum does not matter.

Partitions of 4:

4=1414141=242=2414+1=3+1=4
There are five partitions for 4.



Partitions (contd)
Let P(n) = number of partions of n. For example, P(4) = 5.

To “draw” partitions we use Ferrers diagrams. Write each term in a partition as a row of
dots. For example:

4 =2+ 1+1 can be represented as:

Let Py(n) = number of partitions of n into exactly k pieces. For example,
Py(4) =2 and P3(4) =1

Note that P(n) = k;zn:1 Pi(n)

Observations !

If we take a partition of n and if its smallest term is a 1 we can remove that 1 and get a
partition of (n — 1).

If we have a partition that does not have any 1’s then we can subtract 1 from every term
in the partition.

If the partition has k parts we get a partition of (n — k) into k parts.
Pyr_1(n — 1) is how we make all partitions of n with k£ parts that end with a 1.

Pi(n — k) is how we make all partitions of n into k parts where every term is bigger than
1.

Using Py(n) = Pr—1(n — 1) + Py(n — k) along with P,(n) =1 and Py(n) = 0 provided k > n:

n| P(n) | Pi(n) | Py(n) | Ps(n) | Pyn) | Ps(n) | Ps(n)
1 1 1 0 0 0 0 0
2| 2 1 1 0 0 0 0
31 3 1 1 1 0 0 0
4 ) 1 2 1 1 0 0
5 7 1 2 2 1 1 0
6| 11 1 3 3 2 1 1

Note: There is no known closed form for P(n).
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Generating Function for P(n)

P(z) = :éo P(n)z"

ﬁ counts ways to write n as a sum of just 1’s.

= counts ways to write n as a sum of just 2’s.

% counts ways to write n as a sum of just £’s.

Multiplying all of these together:

1
k=1



