Class Notes - 02/16/2017
How many ways can we write the number n as the sum of k nonnegative integers?

$$
e_{1}+e_{2}+e_{3}+\cdots+e_{k}=n
$$

Same as asking, "how many ways can we put n objects into k boxes in a row?"
We can represent this by drawing circles for the objects and vertical lines to divide the boxes
So, we need n circles and $k-1$ vertical lines.
So... how many ways can we write down a string of n circles and $k-1$ lines?
ex. $\mathrm{OO}|\mathrm{OO}| \mid \mathrm{O}$ represents 2 objects in box 1,2 in box 2,0 in box 3 , and 1 in box 4
Then we have $n+k-1$ symbols to write down. Thus, there are $\binom{n+k-1}{n}$ ways to choose n of these symbols to be O's and the rest |'s.
\Rightarrow There are $\binom{n+k-1}{n}$ ways to write n as a sum of k non-negative integers.

$$
\begin{aligned}
\therefore \frac{1}{(1-x)^{k}} & =\left(\frac{1}{1-x}\right)\left(\frac{1}{1-x}\right)\left(\frac{1}{1-x}\right) \cdots \\
& =\sum_{n=0}^{\infty}\binom{n+k-1}{n} x
\end{aligned}
$$

Generalized Binomial Theorem

Let $\alpha \in \mathbb{Q}$. Then, $(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}$, where the generalized binomial coefficient $\binom{\alpha}{n}=\frac{(\alpha)(\alpha-1)(\alpha-2) \ldots(\alpha-n+1)}{n!}$.

Multiplying generating functions $\left[x^{n}\right](A(x) B(x))$ counts how many ways we can create an object of size n by combining objects of size a from $A(x)$ and objects of size b from $B(x)$ where $a+b=n$.
example. How many ways can you make change for a dollar using pennies, nickels, dimes, and quarters? We can answer this using generating functions.
$\frac{1}{1-x}=1+x+x^{2}+\ldots$ counts how many ways we can get n cents using only pennies.
$\frac{1}{1-x^{5}}=1+x^{5}+x^{10}+x^{15}+\ldots$ counts how many ways we can get n cents using only nickels.
Similarly, $\frac{1}{1-x^{10}}$ counts how many ways to get n cents using dimes and $\frac{1}{1-x^{25}}$ counts how many ways to get n cents using only quarters.
$\Rightarrow C(x)=\left(\frac{1}{1-x}\right)\left(\frac{1}{1-x^{5}}\right)\left(\frac{1}{1-x^{10}}\right)\left(\frac{1}{1-x^{25}}\right)$ is the generating function we can use to count the number of ways to make change for n cents.
$\Rightarrow\left[x^{100}\right] C(x)$ is the number of ways we can count change for a dollar using pennies, nickels, dimes, and quarters.

Dyck Paths

- Walk of length $2 n$ where, at every step, we either go up or down.
- Always stay above or on the x-axis
- Start and end at the x-axis
example.

How many Dyck Paths are there of length n ?
if $n=0$, there is one possibility (empty path)
if $n=2$, there is one possibility (up then down)
if $n=4$, there are 2 possibilities

or

if $n=6$, there are 5 possibilities

So, our sequence so far is $1,1,2,5, \ldots$, and we want to find a generating function.
Our solution is to break a Dyck Path into smaller Dyck Paths. We can always take the first time a Dyck Path returns to the x-axis and break it into two paths there, as shown below:

where the first box represents any Dyck Path of length k, the second box represents any Dyck path of length l, and so the whole Dyck Path has length $k+l+2$.

Let $C(x)$ be the generating function for the count of Dyck Paths of length $2 n$.

$$
\Rightarrow C(x)=1+x+2 x^{2}+5 x^{3}+\ldots
$$

From decomposing any Dyck Path the way we did earlier, we have
$C(x)=x C(x) C(x)+1$ where x corresponds to the up step and down step, $[C(x)]^{2}$ corresponds to the two smaller Dyck Paths, and 1 accounts for the empty path.

Then, $C(x)=x C(x)^{2}+1$

Solving for $C(x)$, we have

$$
\begin{aligned}
0 & =x C(x)^{2}-C(x)+1 \\
C(x) & =\frac{1 \pm \sqrt{1-4 x}}{2 x}
\end{aligned}
$$

