(1) Prove that there are infinitely many primes. One way to do this is by means of contradiction: assuming $p_{1}, p_{2}, \ldots, p_{k}$ are the only primes, consider the number $p_{1} p_{2} \cdots p_{k}+1 .{ }^{1}$
(2) Prove that there are infinitely primes $\equiv 3 \bmod 4$. (Hint: assuming $p_{1}, p_{2}, \ldots, p_{k}$ are the only primes $\equiv 3 \bmod 4$, consider the number $4 p_{1} p_{2} \cdots p_{k}-1$.) Explain why this is much easier than to prove that there are infinitely primes $\equiv 1 \bmod 4 .^{2}$
(3) Prove that $p \in \mathbb{Z}_{>1}$ is prime if and only if $a^{p-1} \equiv 1 \bmod p$ for all $a \not \equiv 0 \bmod p .^{3}$ Explain how this can be used for a test for compositeness of an integer without actually factoring it.

[^0]
[^0]: ${ }^{1}$ Your proof probably uses two "obvious" but nontrivial facts, namely, (1) that every integer can be uniquely factored into primes, and (2) that two adjacent integers are relatively prime.
 ${ }^{2}$ There is a general result, known as Dirichlet's Theorem, which says that given $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$, there are infinitely primes $\equiv a \bmod b$.

