- (1) Make a list of all quadratic residues mod 2, 3, 5, and 7.
- (2) Prove our corollary from class: given a primitive root $g \mod p$ (an odd prime), that $a = g^n$ is a quadratic residue mod p if and only if n is even. Conclude that, for an odd prime p, exactly half the integers between 1 and p 1 are quadratic residues mod p.
- (3) Let p be and odd prime not dividing a and b. Using Euler's criterion, show that:

(a)
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

- (b) $\binom{a}{p} \equiv a^{\frac{p-1}{2}} \mod p$ (Think about the roots of $x^2 \equiv 1 \pmod{p}$)...)
- (4) Fill out the following table:

$\left(\frac{q}{p}\right)$	p = 3	p = 5	p = 7	p = 11	p = 13
q = 3					
q = 5					
q = 7					
q = 11					
q = 13					

Compare the rows and columns (e.g. how does $\left(\frac{p}{5}\right)$ compare to $\left(\frac{5}{p}\right)$)? Can you make any conjectures as to how these two values relate?