For every problem, there is one solution which is simple, neat, and wrong.

\author{

- H. L Mencken
}
(1) Compute $\varphi(6), \varphi(10), \varphi(15), \varphi(21)$.
(2) Fix p, q, two distinct primes. Consider the function $f: \mathbb{Z}_{p q}^{*} \rightarrow \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$ given by

$$
f(k):=(k \bmod p, k \bmod q) .
$$

(a) Show that f is well defined.
(b) Show that f is one-to-one.
(c) Show that f is onto. (Hint: Chinese Remainder Theorem.)
(d) Conclude that $\varphi(p q)=\varphi(p) \varphi(q)$.
(3) Do Tasks 8-14 in the Mobius file.

