Group Discussion 3

The kind of knowledge which is supported only by observations and is not yet proved must be carefully distinguished from the truth

- Leonhard Euler
(1) Suppose $a, b, m, h \in \mathbb{Z}$ with $m, h>0$, and let $g:=\operatorname{gcd}(a, m)$. Prove:
(a) If $g \nmid b$ then $a x \equiv b \bmod m$ has no solution $x \in \mathbb{Z}$.
(b) If $g=1$ then $a x \equiv b \bmod m$ has a unique solution modulo m. (Hint: show that if x^{\prime} is another solution, then $m \mid\left(x-x^{\prime}\right)$.)
(c) If $g=1$ and x is the unique solution to $a x \equiv b(\bmod m)$ then the every solution to $a h y \equiv b h(\bmod h m)$ is of the form

$$
y=x+m k
$$

for some $k \in \mathbb{Z}$ and that there are h distinct residues modulo $h m$ of this form.
(d) Use this to show that if $g \mid b$ then $a x \equiv b \bmod m$ has g distinct solutions x modulo m.
(2) Suppose $a, m \in \mathbb{Z}$ with $m>0$ and $\operatorname{gcd}(a, m)=1$, and let $\left\{r_{1}, r_{2}, \ldots, r_{\phi(m)}\right\}$ be a reduced residue system modulo m.
(a) Show that $\left\{a r_{1}, a r_{2}, \ldots, a r_{\phi(m)}\right\}$ is also a reduced residue system modulo m.
(b) Conclude that $r_{1} r_{2} \cdots r_{\phi(m)} \equiv\left(a r_{1}\right)\left(a r_{2}\right) \cdots\left(a r_{\phi(m)}\right) \bmod m$ and, consequently, that

$$
a^{\phi(m)} \equiv 1 \quad(\bmod m) .
$$

(This is Euler's theorem.)
(c) Explain how this implies that, if p is prime and $a \in \mathbb{Z}$, then $a^{p} \equiv a \bmod p$. (This is Fermat's little theorem.)
(d) Use Fermat's Little theorem to prove that, if p is prime and $a, b \in \mathbb{Z}$, then $(a+b)^{p} \equiv$ $a^{p}+b^{p} \bmod p$. (This is called the freshman's dream.)
(3) Suppose p is prime. Prove that $x^{2} \equiv 1 \bmod p$ has precisely the two solutions $x \equiv$ $\pm 1 \bmod p$.
(4) Suppose $m \in \mathbb{Z}_{>0}$.
(a) Suppose m is prime. Use (1b) and (3) to show that if $a \not \equiv 0, \pm 1 \bmod m$ then there exists $b \not \equiv 0, \pm 1, a \bmod m$ such that $a b \equiv 1 \bmod m$.
(b) Conclude that $(m-1)!\equiv-1 \bmod m$ if m is prime. (This is one direction of Wilson's Theorem, which states that $(m-1)!\equiv-1 \bmod m$ if and only if m is prime.)

