The kind of knowledge which is supported only by observations and is not yet proved must be carefully distinguished from the truth

- (1) Suppose $a, b, m, h \in \mathbb{Z}$ with m, h > 0, and let g := gcd(a, m). Prove:
 - (a) If $g \nmid b$ then $ax \equiv b \mod m$ has no solution $x \in \mathbb{Z}$.
 - (b) If g = 1 then $ax \equiv b \mod m$ has a unique solution modulo m. (Hint: show that if x' is another solution, then $m \mid (x x')$.)
 - (c) If g = 1 and x is the unique solution to $ax \equiv b \pmod{m}$ then the every solution to $ahy \equiv bh \pmod{hm}$ is of the form

$$y = x + mk$$

for some $k \in \mathbb{Z}$ and that there are h distinct residues modulo hm of this form.

- (d) Use this to show that if $g \mid b$ then $ax \equiv b \mod m$ has g distinct solutions $x \mod u$ ulo m.
- (2) Suppose $a, m \in \mathbb{Z}$ with m > 0 and gcd(a, m) = 1, and let $\{r_1, r_2, \ldots, r_{\phi(m)}\}$ be a reduced residue system modulo m.
 - (a) Show that $\{ar_1, ar_2, \ldots, ar_{\phi(m)}\}$ is also a reduced residue system modulo m.
 - (b) Conclude that $r_1 r_2 \cdots r_{\phi(m)} \equiv (ar_1)(ar_2) \cdots (ar_{\phi(m)}) \mod m$ and, consequently, that

$$a^{\phi(m)} \equiv 1 \pmod{m}$$
.

(This is *Euler's theorem*.)

- (c) Explain how this implies that, if p is prime and $a \in \mathbb{Z}$, then $a^p \equiv a \mod p$. (This is *Fermat's little theorem*.)
- (d) Use Fermat's Little theorem to prove that, if p is prime and $a, b \in \mathbb{Z}$, then $(a+b)^p \equiv a^p + b^p \mod p$. (This is called the *freshman's dream*.)
- (3) Suppose p is prime. Prove that $x^2 \equiv 1 \mod p$ has precisely the two solutions $x \equiv \pm 1 \mod p$.
- (4) Suppose $m \in \mathbb{Z}_{>0}$.

Group Discussion 3

- (a) Suppose *m* is prime. Use (1b) and (3) to show that if $a \neq 0, \pm 1 \mod m$ then there exists $b \neq 0, \pm 1, a \mod m$ such that $ab \equiv 1 \mod m$.
- (b) Conclude that $(m-1)! \equiv -1 \mod m$ if m is prime. (This is one direction of Wilson's Theorem, which states that $(m-1)! \equiv -1 \mod m$ if and only if m is prime.)