I'm a mathematical optimist: I deal only with positive integers.

– Tendai Chitewere

- (1) Let a, b be positive integers and $d = \gcd(a, b)$. Prove that $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.
- (2) Prove that if p is a prime number and $p \mid ab$ then $p \mid a$ or $p \mid b$. Then give a counterexample to this statement if p is not a prime number.

We will use this to prove the following (important) theorem.

Fundamental Theorem of Arithmetic: (Unique Factorization) For every integer n > 1 there exist unique primes $p_1 < p_2 < \cdots p_k$ and positive integers a_1, a_2, \ldots, a_k such that

$$n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}.$$

- (3) Let $n \in \mathbb{Z}$ with n > 1.
 - (a) Prove, by induction that there exist the primes p_1, p_2, \ldots and integers a_1, a_2, \ldots satisfying the equation above.
 - (b) Prove, by contradiction, that these primes and integers are unique. (Hint: suppose there exist integers with different factorizations, and let m be the smallest number with distinct factorizations... This is where you may want to use problem 2 as well.)
- (4) Suppose $a, b \in \mathbb{Z}$, not both zero. Define m = lcm(a, b), the **least common multiple** of a and b to be a number m satisfying:
 - $m \ge 0$.
 - $a \mid m$ and $b \mid m$.
 - If $a \mid M$ and $b \mid M$ then $m \mid M$.

Prove that

$$\operatorname{lcm}(a,b) = \frac{ab}{\operatorname{gcd}(a,b)}.$$