I'm a mathematical optimist: I deal only with positive integers.

- Tendai Chitewere
(1) Let a, b be positive integers and $d=\operatorname{gcd}(a, b)$. Prove that $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
(2) Prove that if p is a prime number and $p \mid a b$ then $p \mid a$ or $p \mid b$. Then give a counterexample to this statement if p is not a prime number.

We will use this to prove the following (important) theorem.
Fundamental Theorem of Arithmetic: (Unique Factorization) For every integer $n>1$ there exist unique primes $p_{1}<p_{2}<\cdots p_{k}$ and positive integers $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}} .
$$

(3) Let $n \in \mathbb{Z}$ with $n>1$.
(a) Prove, by induction that there exist the primes p_{1}, p_{2}, \ldots and integers a_{1}, a_{2}, \ldots satisfying the equation above.
(b) Prove, by contradiction, that these primes and integers are unique. (Hint: suppose there exist integers with different factorizations, and let m be the smallest number with distinct factorizations... This is where you may want to use problem 2 as well.)
(4) Suppose $a, b \in \mathbb{Z}$, not both zero. Define $m=\operatorname{lcm}(a, b)$, the least common multiple of a and b to be a number m satisfying:

- $m \geq 0$.
- $a \mid m$ and $b \mid m$.
- If $a \mid M$ and $b \mid M$ then $m \mid M$.

Prove that

$$
\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}
$$

