- (1) In your group, remind each other about tests for divisibility by 2, 4, and 5. Prove that these tests work.
- (2) Let $a, b, c \in \mathbb{Z}$ with $c \neq 0$. Use the definition of divides to prove that if $c \mid a$ and $c \mid b$ then $c \mid (ax + by)$ for any $x, y \in \mathbb{Z}$.
- (3) Prove that if $d = \gcd(a, b)$ and f is a common divisor of a and b, then $d \ge f$.

For the following problem we assume the following proposition:

Proposition: (Least Integer Principle) Every nonempty set of positive integers has a least element.

This proposition may seem obvious, but would still need to be proved. (We could prove it using induction.) We will use it to prove the following.

Euclid's division lemma: For any $a, b \in \mathbb{Z}$, with b > 0, there exists $q, r \in \mathbb{Z}$ with a - bq = r and $0 \le r < b$.

- (4) Let $a, b \in \mathbb{Z}$ with b > 0.
 - (a) Show that there exists some integer k such that a bk > 0. (Hint: Try using two cases, one when a > 0 and one when $a \le 0$.)
 - (b) Set $S = \{k \in \mathbb{Z} \mid a bk > 0\}$. Use the Least Integer Priciple and the previous problem to prove the existence of $q, r \in \mathbb{Z}$ satisfying the requirements of Euclids Lemma. (Namely, that a bq = r and $0 \le r < b$.
 - (c) Finally, give a proof by contradiction that q and r are the unique integers satisfying these two requirements. Suppose that q' and r' are another pair of integers with a bq' = r' and $0 \le r' < b$.
 - (i) Prove that |r r'| < b.
 - (ii) By subtracting the equation a bq = r from a bq' = r' use this to show that |b(q q')| < b.
 - (iii) Explain why this proves that q = q' and then that r = r'.