The Mobius Function and Mobius Inversion

Carl Lienert*

March 11, 2021

August Ferdinand M6bius (1790-1868) is perhaps most well known for the one-sided Mébius strip
and, in geometry and complex analysis, for the Médbius transformation. In number theory, Mobius’
name can be seen in the important technique of Mébius inversion, which utilizes the important
Mobius function. In this PSP we’ll study the problem that led Mdbius to consider and analyze the
Mobius function. Then, we’ll see how other mathematicians, Dedekind, Laguerre, Mertens, and Bell,
used the Mobius function to solve a different inversion problem.! Finally, we’ll use Mobius inversion
to solve a problem concerning Euler’s totient function.

1 Mobius: the Mobius function

All excerpts of Mobius’ work in this project are from Uber eine besondere Art von Umkehrung der
Reihen (On a special type of series inversion). The following excerpt, from the beginning of Mdbius’
paper, sets up the basic form of Mobius’ inversion problem:

The famous problem of series inversion is that, when a function of a variable is given as a
consecutive series of powers of the variable, one inversely requires the variable itself, or even
any other function of it, expressed as an ongoing series of powers of the original function. One
knows that it requires no small analytical ingenuity to discover the rule according to which
the coefficients of the second series depend on the coefficients of the first. The following task
is much easier to solve.

Suppose a function f(z) of a variable x is given as a series according to the powers of x:

f(x) = a17 + agw® + azx® + agx* + ... (1)

One should represent = as an ongoing series, not according to the powers of the function
f(z), but rather according to the function f of the powers of x:

x = by f(x) +baf(x?) + baf(x®) + baf(2?) + ... (2)
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Where have you seen a function written in the form in (1)?

The expression in (2) is the inversion of the expression in (1). Why would this be called an

inversion?

Mobius continued, and stated the goal of the problem:
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The main demand of our problem is: Express the coefficients by, ba, b3, ... of the series (2)
as functions of the coefficients a1, az,as,... of the series (1); and this occurs through the
following very easy calculation.

In your own words, what is the objective?

Ok, now it’s time to get our hands dirty. Given that
f(z) = a1z 4 aox® + azz® + agx* + ...,

we’ll find expressions for by, bo, b3, by, ... in terms of the given coefficients ay, a2, as, aq,. ...
The symbolic equations have been removed from the following two excerpts. The tasks that
follow ask you to fill in the missing sets of equations.
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From (1) flows:

’ Equation Set A‘

If one substitutes these values of f (2?), f (2®),... and of fx itself from (1) into the equation
(2), one gets:

Give expressions for f(z2), f(z?®), f(x*), f(2°), and f(2°). These are Equation Set A.




Do what Mobius instructed: “substitute these values of f (z?), f (z°),... and of f(z) itself

9

from (1) into the equation (2)
that it’s in the form

and then rearrange the expression you obtain on the right so

T+ 2%+ x° + a2t + x® + 28+ (3)

This is Equation B.

Give the coefficient of 223 in terms of a’s and b’s.

Give the coefficient of 22* in terms of a’s and b’s.

Mobius continued:

The law of progression of the coefficients in this series is clear. Namely, to determine the
coefficient of z, partition the number m in all possible ways into two positive whole factors.
Each of these products then gives a term of the coefficient sought, in that one takes the two
factors of the product as indices of an a and b to multiply together.

Because the equation above must hold for every value of x, we have:

Equation Set C

through which every b can be calculated with the aid of the previous b's.

In order therefrom to find the individual b's independently from one another, one sets a; =1
for the sake of greater simplicity, and obtains:

Equation Set D

Mobius explained how to obtain the coefficient of ™ in this expansion in the first paragraph
of this excerpt. Compare his explanation to your answers and to your work for Tasks 6 and 7.

Remember, the expression you found, (3), is the right hand side of (2):

x=0bif(x) +b2f(x2) +bgf(a:3) +b4f(a:4) + ...

Next, Mobius stated “Because the equation above must hold for every value of z...” So, match
(3) with the left hand side of (2) in order to obtain conditions on all the coefficients you found
in (3). This will be a list of equations with a’s and b’s on the one side of the equality, and a
number on the other. This is Equation Set C.



At this point, Mobius decided to let a; = 1 for convenience. We’ll do the same. There’s no harm
done; if the function you are interested in doesn’t have a; = 1 use the function i f(z) instead and
adjust accordingly in the end.

From Equation Set C, you can now find values for the b’s in terms of the a’s.

What is by ?

Task 11 || Use the value of by to find the value of by in terms of a’s. Continue: find b3, bys, b5, bg, b7, and

bg in terms of a’s (no b’s). These are Equation Set D.

Next, Mobius made an observation about how to form the b’s without the need to extend the
process above indefinitely:
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These few developments are sufficient to take away how also the values of the succeeding b's
are put together from a9, as,... . Namely one decomposes the index m of b,, in all possible
ways into factors, in which one takes m itself as the largest factor, but omitting 1, and also
considers any two decompositions, that differ only in the order of their factors, as different;
or as one can express briefly in the language of combinatorial theory: One builds all variations
with repetition to the product m. Each of these variations then gives a term in the value
of b,,, taking the elements of the variation as the indices of a's, and this term receives the
positive or negative sign, according to whether the number of elements is even or odd.

So for example all variations of the product 12 are:
12,2-6,3-4,4-3,6-2,2-2-3,2.3.2, 3.2.2,

and thus
biz = —a12 + 2aza6 + 2azas — 3azazas.

The general correctness of this rule flows from the recurrence formula (Equation Set C) so
easily that it would be superfluous for us to tarry for a proof.

Task 12| Use Mo&bius’ observation to give an expression for bg in terms of a’s. Compare both your answer

and your process to those of Task 11.

Task 13|| Use Mobius’ observation to give an expression for bs; in terms of a’s.

Task 14 || Give an expression for b5 in terms of a’s.

Mobius presented several generalizations of the basic problem stated in the first excerpt. We’ll
look at one of these to get the idea.



The same relations between the coefficients a’s and b's would incidentally also be obtained
if, like (1) and (2), one had in the same way compared the general equalities

fr=a1Fx+ ayF(z?) +agF(a3) + ...

Fa =bifx+bof(x?) +baf(2®) + ...
with one another. Supposing therefore that the relations (Equation Set C) hold between the
a's and the b's, then for these two equalities the second is a consequence of the first, and the

first a consequence of the second, where in the first case F'x, and in the latter fx, may be a
function of x.
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Task 15 || What function, F'(x), would make this generalized problem the same as the basic problem

presented in the first excerpt?

Task 16 || Mobius wrote “Supposing therefore that the relations (Equation Set C) hold between the a’s

and the b’s....” Verify that this is, in fact, true. That is, repeat the analysis of Tasks 4, 5, and
9 for this generalized problem.

Perhaps the fact that Equation Set C is the same for the basic problem as it is for the generalized
problem made Mo&bius think something interesting was happening. In fact, Mobius presented two
further generalizations in which the same pattern continued to occur.

What Mobius did next is a valuable lesson: work out a simple example. Maybe the example will
provide insight, maybe the example will be important in its own right. That is, he didn’t try to
analyze the most general case he had presented, which would have been very difficult. Instead he
returned to the basic example, and in fact made it even easier for himself and for his readers:
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In order now to give a very simple example of this new kind of series inversion, we want to
set

ay=ax=az=---=1,
so that from (1)

X

fr=x+2z®>+ 2>+ ... and therefore fz = 7
—x

But with these values for a's, according to (Equation Set D):

b1 =1,bp =—-1,b5=—-1,04,=0,b5 = —1,bg = 1,b7 = —1,bg = 0, etc,



and thus from (2):
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Task 17|| Mobius claimed

x

— 2 3 c e e — .
fl)=a+2"+2° + -

What kind of series is  + z2 + 22 + ...? Show that, in fact,

s+l a4 = *

1—z

Task 18 || Show how the result from Task 17 yields (4).

Task 19 || What are the next 3 non-zero terms in (4)?

Task 20|| Can you predict b values without going through the entire process? Try to predict values for

bs7, bea, bes, b1os, and biag. Explain how you arrived at your predictions.

Here is the observation Md&bius gave for b values:
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T m
1—z™

that for m = 1 and for every m that is a product of an even number of distinct prime numbers,

In the series (4), whose general term is and whose sum is = z, the law therefore reigns,

the coefficient of the term is = 1, that every term, whose m is itself a prime number, or a
product of an odd number of distinct primes, has the coefficient —1, and finally that all terms

are dropped, whose exponents have quadratic or higher powers of prime numbers as factors.
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Task 21 || Compare your predictions in Task 20 to Mdbius’ observation. Do they agree? If not, explain

how your prediction method differs from that of Mobius.

These b values are the values of what is known today as the Mobius function.

Task 22|| The Mo&bius function, b;, is defined for positive integers, i. Write the function that Mobius

described using modern notation.



Mobius dedicated the middle portion of his paper to a careful and thorough examination of the
this function. Having found the b values, M&bius had solved the inversion problem, but not what
is known today as Mobius Inversion. He then used this inversion technique to produce interesting
series results. Some examples are:

(&

4_1+1 1+1+1 1 1 1+
T 3 5 7 11 13 15 17 '
4 3 5 7 11 13 17 19 23

T

4 48 12 12 16 20 24
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Notice, these examples give a method to approximate the transcendental numbers e and .

Task 23 || In the product expansion given above for e what are the next 3 missing factors? Why?

The development of these examples can be found at the end of M6bius’ paper and with a little
work you can follow it, even if you don’t read German. However, this type of inversion is not what
is known today at Mébius inversion and so we won’t follow that detour here.

2 Dedekind: Mobius inversion

Today, Mobius inversion concerns a different kind of sum: a divisor sum of an arithmetic function.

An arithmetic function is one whose domain is positive integers only. You might notice that the
Mobius function is an arithmetic function. In fact, the values a; in the first excerpt from M&bius
define an arithmetic function: the domain is i =1,2,3,.... If f(k) is an arithmetic function, then a
divisor sum is:

F(n) =Y f(d).
din

For example, if n = 6,
F6) = f(1) + £(2) + f(3) + f(6).

Julius Wilhelm Richard Dedekind (1831-1916) studied mathematics under Carl Friedrich Gauss
(1777-1855) and later worked closely with Peter Gustav Lejeune Dirichlet (1805-1859) who took
Gauss’ chair upon his death. Dedekind was the first to state and prove Mobius inversion in his paper
Abrifs einer Theorie der hohern Congruenzen in Bezug auf einen reelen Primzahl-Modulus (Outline
of a theory of higher congruences in connection with a real prime-modulus) [?]:
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The shared source of the theorem in section 18 and the analogous theorem just now used is the
following. Let m be any whole number; further a,b,c, ...,k all the distinct prime numbers
that divide into m; one forms two separate complexes D, D’ of divisors of the number m
according to the following principle. In the complex D one initially includes all divisors of the
number m; in the complex D’ all divisors of % all divisors of % and so on; then again in the
complex D all divisors of 7z, of ™, of i and so on; then again in the complex D’ all divisors
of 7= and so on, until finally one has included also all divisors of " either in the complex
D or in the complex D’, depending on whether the number of prime numbers a, b, c, ...,k is
even or odd. Then it is easy to show that each divisor of the number m occurs just as often
in one complex as in the other, with the exception of the divisor m itself, which occurs solely
and only once in the complex D. It requires only one look to derive from this the inversion
of the equalities

> f(8) = F(m) or [] £(6) = F(m)

in which the sum or product sign > or ] refers to all divisors ¢ of an arbitrary number m;
these solutions are contained in the formulas

f(m)zF(m)—ZF(%) +ZF<%) ~ete. ... (5)
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We are only interested in the equations involving summation, and not those with products.

Task 24

Task 25

Task 26

Task 27

Task 28

Task 29

What does this have to do with M&bius?! Rewrite the expression on right hand side of (5)
using the Mo6bius function.

What did Dedekind mean by “complex?”
Determine D and D’ for m = 60.

Explain Dedekind’s strategy. What does Dedekind’s discussion about the complexes D and D’
have to do with (5)7

Write the expression on the right side of (5) for m = 6, without summation notation. Simplify

and confirm that, in fact, you obtain f(6).

Write the expression on the right side of (5) for m = 23 - 32 without summation notation.

Simplify and confirm that, in fact, you obtain f(23-32). Try to pay careful attention to how
many times a given term f(k), for any divisor k of m, is added or subtracted in the expression

(5)-

Dedekind’s setup of the statement with “a,b,c,...k” would, today, be replaced by writing m in

its prime factor form:

a1, a2, 03

(%)

where p; is prime.



Translate the theorem that Dedekind stated using modern “if ...then ...” presentation and

modern notation. In particular use > djm notation and write m in its prime factor form.

Dedekind claimed that “it only requires one look” to see that

—ZF(%) +ZF(%) ~ ete. (6)

simplifies to f(m).
Tasks 28 and 29 provide reason to believe that Dedekind’s claim is, in fact, true, but certainly

do not constitute a proof. Let’s try a slightly more complicated example with the hope that it will

give us an idea how to prove (5) is true for any value of m.

Let m =2%-312.53. 711 Let k =22.3'2.52. 710, We’ll count how many times f(k) appears

in each of the sums in (6).

(a)
(b)

Remember F'(m) = 3_,, f(d). How many times does f(k) appear in this sum?
How many times does f(k) appear in

= r(5)- X T

a d|%

The sum on the left of the equality is over distinct primes, a, in the factorization of m.

(The way to read double sums like this is to fix a prime a in the outer sum, then work
through the inner sum for that value of a. Then change to another value of a, work
through the inner sum, etc., until you’ve exhausted all the primes that divide m.)

How many times does f(k) appear in

SOF (g) =33y

ab ab d|

The sum on the left of the equality is over pairs of distinct primes in the factorization of
m.

How many times does f(k) appear in

> F(Ge) = 20 2 g

a,b,c a,b,cd| 2=

How many times does f(k) appear in

Z (abce) Z Z f(d

a,b,c,e ab,c.e d| >

abce

This is where (6) ends for this example. Why?

Finally, add and subtract your answers to parts 1, 2, 3, 4, and 5 appropriately. Do you
obtain the value you expected?



(h) There is only one divisor of m for which something similar won’t happen. What divisor is
this?

Task 32|| Repeat Task 31 with k& = 2% - 312.

We’re ready to make the idea above general. Let
m=pd . pg2. . plt,
We may as well assume that a; > 0 for each 7. Any divisor of m is of the form
k=p .p§2...pfl

where 0 < 3; < «; for each 1.

Task 33|| We've allowed the 5’s to be zero, but not the o’s. Why?

Notice, the key to the counting in Task 31 was to look at the exponents in the prime factorizations
of m and k.
One of two things happens for any given i: either 3; < o; or 8; = «;.

Task 34 || If 5; < a; for M different values of i, how many terms in (6) will count f(k)? That is, in how

many of the sums in (6) does f(k) appear? It doesn’t matter whether the difference a; — 5; is
1 or 21. Why?

Task 35 || In the case f5; = a; for all values of i, which of the terms in (6) will count f(k)? Why?

Now, let M be the size of the set {a; — 5; # 0}. That is, M is the number exponents in the prime
factorization of k that are smaller than those of m. Keep in mind, we are focusing on one particular
divisor, k, at a time.

]\t/‘[) 2 is the
number of ways to choose t items from a collection of M items when the order in which they are

In order to count effectively we’ll use a function from combinatorics. The function (

chosen doesn’t matter.

Task 36 || We're ready to repeat the idea in Task 31 in general. For any particular divisor k, of m:

(a) Remember F(m) =3_,,, f(d). How many times does f(k) appear in this sum?
(b) How many times does f(k) appear in

S (5) =SS

Di d|%

7

(c) How many times does f(k) appear in

mo(2)-5 5

DiPj Pi,Pj d| —p;j

2read “M choose t”

10



(pi # pj)
(d) How many times does f(k) appear in

>t )- Y % s

Pi,Dj»Dr PipiPr PisPjPr d| —2—
pipjPr

(e) How many times does f(k) appear in

S (o) = XX sy

DiP;jPrPs
PisPj;Pr;Ps J PisPjPriPs d|p¢p;zrr-ps

(f) What is the form of the last, non-empty sum? That is, what is the last term in (6) that
counts an occurrence of f(k)? How many times does f(k) appear in this last sum?

(g) Add and subtract your answers appropriately to the above parts.

To finish we’ll need the Binomial Theorem:

(x—y)M=1- <Af[>xM1y + <]\24>a:M2y2 - (A?f[)a?M?’yB 4t (—1)M<%>yM.

Task 37 || Compare your answer in part ((g)) above to the Binomial Theorem. Pick values for x and for

y that make the two expressions the same, and hence compute the sum.

Task 38|| If you haven’t already taken into account the case when k = m, explain what happens in this

case.

This ends a proof of Dedekind’s presentation of Mébius inversion.

3 Laguerre and Mertens: evolution of Mobius inversion

Next, Edmond Laguerre (1834-1886) and Franz Carl Joseph Mertens (1840-1927) contributed to
the story of Mobius inversion. Their papers appeared at similar times; we’ll look at Laguerre’s work
first.

Laguerre was the first to present the theorem of Mobius inversion in the format used today. This

excerpt is from his paper Sur quelques théorémes d’arithmétique (On several theorems of arithmetic)

(7.
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Let A(n) designate a number equal to 0 if n is divisible by a square, and in the other case,
equal to +1 according to whether the number of factors of n is even or odd. Suppose two
functions f(m) and ¢(m) are connected by the following relation

f(m) =7 o(d)

where in the second part the summation extends over all the divisors of the integer m.

em) = YA (%) £a), (7)

the summation also extending over all the divisors of m.

Reciprocally, one has
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Task 39|| Which function in Laguerre’s statement is the Mobius function?

Task 40 || The first sentence in this excerpt should be more precise. How?

Task 41 || Explain how the right hand sides of equations (5) and (7) are the same.

Laguerre used the letter ¢ because he was, in particular, interested in deriving a formula for
Euler’s totient function ¢(n). However, the statement holds for any arithmetic function. 3

Mertens introduced the modern notation for the Mobius function, namely the choice of the
letter p, and provided a more succinct definition than that of Mdébius. You might notice he also
took advantage of prime factor notation. The following excerpt is from Ueber einige asymptotische
Gesetze der Zahlentheorie (On several asymptotic laws in number theory) [?].

XXX XXX XXX XXX XX XXX XXX XXX XX XXX XXX XX XX DXIXTXO

Denote by un a number depending on n in such a way that un = 0 if n admits a quadratic
divisor (other than 1), but otherwise possesses the value +1 or —1, according to whether n is
composed of an even (the case of 1 belongs here) or odd number of different prime factors. If
m is decomposed into its prime factors = a®b® ..., then @m, as is generally known, is given

(D)
=Y ul

where the summation extends over all divisors of m.

via the formula

3We'll return to o(n) a little later.
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Task 42 || There is an interesting result at the end of the excerpt. Don’t worry about the first equality;

we’ll come back to that later. The second equality is known as an Euler product. Prove this
equality by expanding the product

(-2

In particular, make sure to explain why the Mobius function appears.
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