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1 Unique Factorization

Definition (Unique factorization). Given an integer n > 1, there is a unique way to write
n = p1 · p2 · ... · pk as a product of prime numbers (up to changing the order of the primes).

“Bigger” sets of integers: Gaussian integers

Gaussian integers are of the form a + b
√
−1 = a + bi, a, b ∈ Z.

Multiplying Gaussian integers yields a Gaussian integer. Gaussian integers also have
unique factorization.

Replace
√
−1 with

√
−5; “integers” look like a + b

√
−5, a, b ∈ Z. We can add, subtract,

multiply, and divide these. Unique factorization fails in this ring.

Example 1.

6 = 2 · 3 = (2 + 0
√
−5)(3 + 0

√
−5)

= (1 +
√
−5)(1−

√
−5)

= 1− (−5)

= 6

It turns out that 2, 3, 1 +
√
−5, and 1−

√
−5 are all irreducible. So, unique factorization is

broken.

2 Division with Remainder

Lemma (Euclid’s division lemma). For any j, k ∈ Z, where k > 0, ∃q, r ∈ Z st

j = qk + r,

where 0 ≤ r < k, q denotes the quotient, and r denotes the remainder.
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Proof. Suppose we’re given j, k ∈ Z w/ k > 0. Set q =
⌊
j
k

⌋
then set r = j−qk, so j = qk+r.

It remains to show that 0 ≤ r < k. We know q =
⌊
j
k

⌋
, so j

k
− 1 <

⌊
j
k

⌋
≤ j

k
by the properties

of the floor function. Multiply through by k to get j − k < qk ≤ j. Note that get qk in the
middle because q =

⌊
j
k

⌋
. Take the second half of this inequality:

qk ≤ j

0 ≤ j − qk = r

Now, take the first half of the inequality:

j − k < qk

j − qk < k

So, we have r = j − qk < k and 0 ≤ r < k as desired.

Definition. Say that a divides b, denoted by a | b if ∃q ∈ Z st aq = b. Note that anything
divides 0 since for any a, we can take q = 0 and a · 0 = 0.

Example 2 (p. 15). For each nonzero integer a, a | 0.

Definition. If a, b ∈ Z, we say that d = gcd(a, b) is the greatest common divisor of a, b
if d | a, d | b, and if f | a, f | b, then f | d.

Example 3 (p. 16). The positive divisors of 12 are 1, 2, 3, 4, 6, and 12. The positive
divisors of −8 are 1, 2, 4, and 8. Thus, the positive common divisors of 12 and −8 are 1, 2,
and 4; hence, gcd(12,−8) = 4.

Theorem. Given any two integers a, b, their greatest common divisor d = gcd(a, b) exists.

Proof. We will prove this by construction, using Euclid’s division lemma. Take a, b, and
assume a ≥ b. Call r0 = b. Use Euclid’s division lemma to get a = q1b + r1. If r1 6= 0, then
define q2, r2 by r0 = b = q2r1 +r2. If r2 6= 0, then r1 = q3r2 +r3. Keep going until eventually,
we get rn−2 = qnrn−1 + rn, where rn = 0. How do we know this is a finite process? This has
to terminate bc r1 > r2 > r3 > ... and the numbers are all ≥ 0.

Claim: rn−1 = gcd(a, b), where rn−1 is the last nonzero remainder.

Proof. (Of the claim) We need to show that rn−1 | a and rn−1 | b and that if f | a and f | b,
then f | rn−1. Use induction to show that rn−1 divides r1 for any 0 ≤ i ≤ n− 1. Base case:
rn−1 | rn−2. We know rn−2 = qnrn−1 + 0, so rn−1 | rn−2 by the definition of divides. Reverse
induction step: Suppose rn−1 divides both ri and ri+1. We want to show it divides ri−1. We
know that ri−1 = qi+1(ri) + ri+1. Since rn−1 | ri, existsq w/ ri = qrn−1 and since rn−1 | ri+1,
∃q′ st ri+1 = q′rn−1. So,

ri−1 = qi+1(qrn−1) + q′rn−1

= [qi+1 · q + q′]rn−1

So, rn−1 | ri−1 and rn | r0 = b. Similarly, rn−1 | a.
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Example 4. Use Euclid’s Algorithm to find gcd(391, 272).

gcd(391, 272) = gcd(272, 119) 391 = 272(1) + 119

= gcd(119, 34) 272 = 119(2) + 34

= gcd(34, 17) 119 = 34(3) + 17

= 17

3 Extended Euclidean Algorithm

Theorem. If gcd(a, b) = d, then ∃x, y ∈ Z st ax + by = d.

Proof. Claim: ∃xi, yi st axi + byi = ri for each ri in Euclid’s Algorithm.

Proof. Induct on i. Base case: let i = 1. Recall from Euclid’s Algorithm that a = q1b + r1.
We can take x1 = 1 and y1 = q1. So, the base case holds. Inductive step: suppose the claim
is true for all integers up to i. Namely, ∃xi, yi where axi + byi = ri. We want to show that
the claim is true for ri+1. Recall Euclid tells us that

ri−1 = qi+1ri + ri+1 (?).

We know ri−1 = axi−1 + byi−1 and ri = axi + byi by the inductive step. Plugging them into
(?), we get

axi−1 + byi−1 = qi+1(axi + byi) + ri+1.

So,
ri+1 = (−qi+1xi + xi−1)︸ ︷︷ ︸

xi+1

a + (−qi+1yi + yi−1)︸ ︷︷ ︸
yi+1

b

Both xi+1 and yi+1 are integers.

Example 5. Find x, y st 391x + 272y = 17
We know from Example 2 that

17 = 119− 3(34)

34 = 272− 2(119)

119 = 391− 1(272)
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So, we obtain the following result

17 = 119− 3(34)

= 119− 3(272− 2(119))

= 7(119)− 3(272)

= 7(391− 1(272))− 3(272)

= 7(391)− 10(272)

So, x = 7, y = −10 .

Corollary. For any integers a, b w/ gcd(a, b) = d, then ∃x, y st ax + by = c iff d | c.

Proof. (⇐) First, suppose d | c. By the definition of divides, ∃e st c = de. By Extended
Euclid, ∃x′, y′ st ax′ + by′ = d. Multiply by e:

a (x′e)︸︷︷︸
x

+b (y′e)︸︷︷︸
y

= de = c

(⇒) Suppose ax + by = c for some x, y ∈ Z. Since d | a and d | b (from gcd(a, b) = d),
we can write a = df and b = dg. Plug these into the linear combination to get

(df)x + (dg)y = c⇔ d(fx + gy) = c.

So, d | c by definition.

Definition. We say p is prime if whenever p = ab, then either a = ±1 or b = ±1. We say
that a, b are coprime or relatively prime if gcd(a, b) = 1.

Example 6 (p. 20). The positive divisors of 7 are 1 and 7. The positive divisors of 27 are
1, 3, 9, and 27. Since 1 is the only positive common divisor of 7 and 27, these two integers
are coprime.

Theorem. If gcd(a, c) = 1 and a | bc, then a | b.

Proof. Bc gcd(a, c) = 1, we know ∃x, y st ax + cy = 1. Multiply this through by b:

abx + cby = b.

Since a | bc, ∃e st bc = ae. Plug this in:

abx + aey = b

a(bx + ey) = b

So, a | b.

Corollary. If p is a prime number and p | ab, then either p | a or p | b.
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Proof. If p | a, then we’re done. Suppose p - a. Since p is prime, gcd(p, a) = 1. By the
theorem, p | b.

Theorem (The Fundamental Theorem of Arithmetic). If n > 1 factors into prime numbers
n = p1 · p2 · ... · pk, then this factorization is unique.

Proof. Induct on n. Base case: let n = 2. 2 is prime, so this factorization is unique. So, the
base case holds. Inductive step: suppose the theorem is true for all integers m, 1 < m < n.
We must consider two cases:

Case 1: n is prime. By the definition of prime, the factorization n = n is a unique
factorization into primes.

Case 2: n is not prime. This means ∃a, b < n st ab = n. Since a, b < n, they factor
uniquely as a = q1q2...qj and b = r1r2...r`. We get a factorization of n now by concatenating
these two factorizations and reordering.

n = (q1...qj)(r1...r`) = p1p2...pk

It remains to show that this factorization is unique. Suppose it isn’t unique. This means
that

n = p1p2...pk

= s1s2...sj (different factorization)

Take p1 so p1 | s1...sj. Since p1 is prime, it must divide one of the si from this list. By the
corollary, say it divides si. si is also prime and divisible by p1. So si = p1. Remove both of
these numbers from the two factorizations.

n

p1
= p2p3...pk = s1s2...si−1si+1...sj

Since
n

p1
< n, it has a unique factorization. So k = j and the list of pi is the same as the

list of si.

Problem to think about: Let {Fn} be the sequence of Fibonacci numbers. What is
gcd(Fn, Fn−1)? How many steps does it take to compute w/ Euclid’s Algorithm? Can you
find other numbers smaller than Fn that require more steps?
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