Week 1 Notes: 2019 August 26-28

MATH 465/565 Towson University

Monday, 2018 August 26

1 Unique Factorization

Definition (Unique factorization). Given an integer n > 1, there is a unique way to write $n = p_1 \cdot p_2 \cdot \ldots \cdot p_k$ as a product of prime numbers (up to changing the order of the primes).

"Bigger" sets of integers: Gaussian integers

Gaussian integers are of the form $a + b\sqrt{-1} = a + bi$, $a, b \in \mathbb{Z}$.

Multiplying Gaussian integers yields a Gaussian integer. Gaussian integers also have unique factorization.

Replace $\sqrt{-1}$ with $\sqrt{-5}$; "integers" look like $a + b\sqrt{-5}$, $a, b \in \mathbb{Z}$. We can add, subtract, multiply, and divide these. Unique factorization fails in this ring.

Example 1.

$$6 = 2 \cdot 3 = (2 + 0\sqrt{-5})(3 + 0\sqrt{-5})$$
$$= (1 + \sqrt{-5})(1 - \sqrt{-5})$$
$$= 1 - (-5)$$
$$= 6$$

It turns out that 2, 3, $1 + \sqrt{-5}$, and $1 - \sqrt{-5}$ are all irreducible. So, unique factorization is broken.

2 Division with Remainder

Lemma (Euclid's division lemma). For any $j, k \in \mathbb{Z}$, where $k > 0, \exists q, r \in \mathbb{Z}$ st

$$j = qk + r_j$$

where $0 \leq r < k$, q denotes the quotient, and r denotes the remainder.

Proof. Suppose we're given $j, k \in \mathbb{Z}$ w/ k > 0. Set $q = \lfloor \frac{j}{k} \rfloor$ then set r = j - qk, so j = qk + r. It remains to show that $0 \le r < k$. We know $q = \lfloor \frac{j}{k} \rfloor$, so $\frac{j}{k} - 1 < \lfloor \frac{j}{k} \rfloor \le \frac{j}{k}$ by the properties of the floor function. Multiply through by k to get $j - k < qk \le j$. Note that get qk in the middle because $q = \lfloor \frac{j}{k} \rfloor$. Take the second half of this inequality:

$$qk \le j$$
$$0 \le j - qk = i$$

Now, take the first half of the inequality:

$$j - k < qk$$
$$j - qk < k$$

So, we have r = j - qk < k and $0 \le r < k$ as desired.

Definition. Say that a divides b, denoted by $a \mid b$ if $\exists q \in \mathbb{Z}$ st aq = b. Note that anything divides 0 since for any a, we can take q = 0 and $a \cdot 0 = 0$.

Example 2 (p. 15). For each nonzero integer $a, a \mid 0$.

Definition. If $a, b \in \mathbb{Z}$, we say that d = gcd(a, b) is the **greatest common divisor** of a, b if $d \mid a, d \mid b$, and if $f \mid a, f \mid b$, then $f \mid d$.

Example 3 (p. 16). The positive divisors of 12 are 1, 2, 3, 4, 6, and 12. The positive divisors of -8 are 1, 2, 4, and 8. Thus, the positive common divisors of 12 and -8 are 1, 2, and 4; hence, gcd(12, -8) = 4.

Theorem. Given any two integers a, b, their greatest common divisor d = gcd(a, b) exists.

Proof. We will prove this by construction, using Euclid's division lemma. Take a, b, and assume $a \ge b$. Call $r_0 = b$. Use Euclid's division lemma to get $a = q_1b + r_1$. If $r_1 \ne 0$, then define q_2, r_2 by $r_0 = b = q_2r_1 + r_2$. If $r_2 \ne 0$, then $r_1 = q_3r_2 + r_3$. Keep going until eventually, we get $r_{n-2} = q_nr_{n-1} + r_n$, where $r_n = 0$. How do we know this is a finite process? This has to terminate be $r_1 > r_2 > r_3 > \ldots$ and the numbers are all ≥ 0 .

<u>Claim</u>: $r_{n-1} = \gcd(a, b)$, where r_{n-1} is the last nonzero remainder.

Proof. (Of the claim) We need to show that $r_{n-1} \mid a$ and $r_{n-1} \mid b$ and that if $f \mid a$ and $f \mid b$, then $f \mid r_{n-1}$. Use induction to show that r_{n-1} divides r_1 for any $0 \leq i \leq n-1$. Base case: $r_{n-1} \mid r_{n-2}$. We know $r_{n-2} = q_n r_{n-1} + 0$, so $r_{n-1} \mid r_{n-2}$ by the definition of divides. Reverse induction step: Suppose r_{n-1} divides both r_i and r_{i+1} . We want to show it divides r_{i-1} . We know that $r_{i-1} = q_{i+1}(r_i) + r_{i+1}$. Since $r_{n-1} \mid r_i$, exists $q \ll r_i = qr_{n-1}$ and since $r_{n-1} \mid r_{i+1}$, $\exists q'$ st $r_{i+1} = q'r_{n-1}$. So,

$$r_{i-1} = q_{i+1}(qr_{n-1}) + q'r_{n-1}$$
$$= [q_{i+1} \cdot q + q']r_{n-1}$$

So, $r_{n-1} | r_{i-1}$ and $r_n | r_0 = b$. Similarly, $r_{n-1} | a$.

Wednesday, 2018 August 28

Example 4. Use Euclid's Algorithm to find gcd(391, 272).

$$gcd(391, 272) = gcd(272, 119) \qquad 391 = 272(1) + 119$$
$$= gcd(119, 34) \qquad 272 = 119(2) + 34$$
$$= gcd(34, 17) \qquad 119 = 34(3) + 17$$
$$= \boxed{17}$$

3 Extended Euclidean Algorithm

Theorem. If gcd(a, b) = d, then $\exists x, y \in \mathbb{Z}$ st ax + by = d.

Proof. <u>Claim</u>: $\exists x_i, y_i \text{ st } ax_i + by_i = r_i \text{ for each } r_i \text{ in Euclid's Algorithm.}$

Proof. Induct on *i*. Base case: let i = 1. Recall from Euclid's Algorithm that $a = q_1b + r_1$. We can take $x_1 = 1$ and $y_1 = q_1$. So, the base case holds. Inductive step: suppose the claim is true for all integers up to *i*. Namely, $\exists x_i, y_i$ where $ax_i + by_i = r_i$. We want to show that the claim is true for r_{i+1} . Recall Euclid tells us that

$$r_{i-1} = q_{i+1}r_i + r_{i+1} \qquad (\star).$$

We know $r_{i-1} = ax_{i-1} + by_{i-1}$ and $r_i = ax_i + by_i$ by the inductive step. Plugging them into (\star) , we get

$$ax_{i-1} + by_{i-1} = q_{i+1}(ax_i + by_i) + r_{i+1}.$$

So,

$$r_{i+1} = \underbrace{(-q_{i+1}x_i + x_{i-1})}_{x_{i+1}} a + \underbrace{(-q_{i+1}y_i + y_{i-1})}_{y_{i+1}} b$$

Both x_{i+1} and y_{i+1} are integers.

Example 5. Find x, y st 391x + 272y = 17

We know from Example 2 that

$$17 = 119 - 3(34)$$

$$34 = 272 - 2(119)$$

$$119 = 391 - 1(272)$$

So, we obtain the following result

$$17 = 119 - 3(34)$$

= 119 - 3(272 - 2(119))
= 7(119) - 3(272)
= 7(391 - 1(272)) - 3(272)
= 7(391) - 10(272)

So, x = 7, y = -10.

Corollary. For any integers $a, b \ w / \gcd(a, b) = d$, then $\exists x, y \ st \ ax + by = c \ iff \ d \mid c$.

Proof. (\Leftarrow) First, suppose $d \mid c$. By the definition of divides, $\exists e \text{ st } c = de$. By Extended Euclid, $\exists x', y' \text{ st } ax' + by' = d$. Multiply by e:

$$a\underbrace{(x'e)}_{x} + b\underbrace{(y'e)}_{y} = de = c$$

 (\Rightarrow) Suppose ax + by = c for some $x, y \in \mathbb{Z}$. Since $d \mid a$ and $d \mid b$ (from gcd(a, b) = d), we can write a = df and b = dg. Plug these into the linear combination to get

$$(df)x + (dg)y = c \Leftrightarrow d(fx + gy) = c.$$

So, $d \mid c$ by definition.

Definition. We say p is **prime** if whenever p = ab, then either $a = \pm 1$ or $b = \pm 1$. We say that a, b are **coprime** or **relatively prime** if gcd(a, b) = 1.

Example 6 (p. 20). The positive divisors of 7 are 1 and 7. The positive divisors of 27 are 1, 3, 9, and 27. Since 1 is the only positive common divisor of 7 and 27, these two integers are coprime.

Theorem. If gcd(a, c) = 1 and $a \mid bc$, then $a \mid b$.

Proof. Bc gcd(a, c) = 1, we know $\exists x, y$ st ax + cy = 1. Multiply this through by b:

$$abx + cby = b$$

Since $a \mid bc$, $\exists e \text{ st } bc = ae$. Plug this in:

$$abx + aey = b$$
$$a(bx + ey) = b$$

So, $a \mid b$.

Corollary. If p is a prime number and $p \mid ab$, then either $p \mid a$ or $p \mid b$.

Proof. If $p \mid a$, then we're done. Suppose $p \nmid a$. Since p is prime, gcd(p, a) = 1. By the theorem, $p \mid b$.

Theorem (The Fundamental Theorem of Arithmetic). If n > 1 factors into prime numbers $n = p_1 \cdot p_2 \cdot \ldots \cdot p_k$, then this factorization is unique.

Proof. Induct on n. Base case: let n = 2. 2 is prime, so this factorization is unique. So, the base case holds. Inductive step: suppose the theorem is true for all integers m, 1 < m < n. We must consider two cases:

<u>Case 1:</u> n is prime. By the definition of prime, the factorization n = n is a unique factorization into primes.

<u>Case 2</u>: *n* is not prime. This means $\exists a, b < n$ st ab = n. Since a, b < n, they factor uniquely as $a = q_1q_2...q_j$ and $b = r_1r_2...r_\ell$. We get a factorization of *n* now by concatenating these two factorizations and reordering.

$$n = (q_1...q_j)(r_1...r_\ell) = p_1p_2...p_k$$

It remains to show that this factorization is unique. Suppose it isn't unique. This means that

 $n = p_1 p_2 \dots p_k$ = $s_1 s_2 \dots s_j$ (different factorization)

Take p_1 so $p_1 | s_1...s_j$. Since p_1 is prime, it must divide one of the s_i from this list. By the corollary, say it divides s_i . s_i is also prime and divisible by p_1 . So $s_i = p_1$. Remove both of these numbers from the two factorizations.

$$\frac{n}{p_1} = p_2 p_3 \dots p_k = s_1 s_2 \dots s_{i-1} s_{i+1} \dots s_j$$

Since $\frac{n}{p_1} < n$, it has a unique factorization. So k = j and the list of p_i is the same as the list of s_i .

Problem to think about: Let $\{F_n\}$ be the sequence of Fibonacci numbers. What is $gcd(F_n, F_{n-1})$? How many steps does it take to compute w/ Euclid's Algorithm? Can you find other numbers smaller than F_n that require more steps?