Week 1 Notes: 2019 August 26-28

MATH 465/565
Towson University
Monday, 2018 August 26

1 Unique Factorization

Definition (Unique factorization). Given an integer $n>1$, there is a unique way to write $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}$ as a product of prime numbers (up to changing the order of the primes).
"Bigger" sets of integers: Gaussian integers
Gaussian integers are of the form $a+b \sqrt{-1}=a+b i, a, b \in \mathbb{Z}$.
Multiplying Gaussian integers yields a Gaussian integer. Gaussian integers also have unique factorization.

Replace $\sqrt{-1}$ with $\sqrt{-5}$; "integers" look like $a+b \sqrt{-5}, a, b \in \mathbb{Z}$. We can add, subtract, multiply, and divide these. Unique factorization fails in this ring.

Example 1.

$$
\begin{aligned}
6=2 \cdot 3 & =(2+0 \sqrt{-5})(3+0 \sqrt{-5}) \\
& =(1+\sqrt{-5})(1-\sqrt{-5}) \\
& =1-(-5) \\
& =6
\end{aligned}
$$

It turns out that $2,3,1+\sqrt{-5}$, and $1-\sqrt{-5}$ are all irreducible. So, unique factorization is broken.

2 Division with Remainder

Lemma (Euclid's division lemma). For any $j, k \in \mathbb{Z}$, where $k>0, \exists q, r \in \mathbb{Z}$ st

$$
j=q k+r,
$$

where $0 \leq r<k, q$ denotes the quotient, and r denotes the remainder.

Proof. Suppose we're given $j, k \in \mathbb{Z} \mathrm{w} / k>0$. Set $q=\left\lfloor\frac{j}{k}\right\rfloor$ then set $r=j-q k$, so $j=q k+r$. It remains to show that $0 \leq r<k$. We know $q=\left\lfloor\frac{j}{k}\right\rfloor$, so $\frac{j}{k}-1<\left\lfloor\frac{j}{k}\right\rfloor \leq \frac{j}{k}$ by the properties of the floor function. Multiply through by k to get $j-k<q k \leq j$. Note that get $q k$ in the middle because $q=\left\lfloor\frac{j}{k}\right\rfloor$. Take the second half of this inequality:

$$
\begin{aligned}
q k & \leq j \\
0 & \leq j-q k=r
\end{aligned}
$$

Now, take the first half of the inequality:

$$
\begin{gathered}
j-k<q k \\
j-q k<k
\end{gathered}
$$

So, we have $r=j-q k<k$ and $0 \leq r<k$ as desired.
Definition. Say that a divides b, denoted by $a \mid b$ if $\exists q \in \mathbb{Z}$ st $a q=b$. Note that anything divides 0 since for any a, we can take $q=0$ and $a \cdot 0=0$.

Example 2 (p. 15). For each nonzero integer $a, a \mid 0$.
Definition. If $a, b \in \mathbb{Z}$, we say that $d=\operatorname{gcd}(a, b)$ is the greatest common divisor of a, b if $d|a, d| b$, and if $f|a, f| b$, then $f \mid d$.

Example 3 (p. 16). The positive divisors of 12 are 1, 2, 3, 4, 6, and 12. The positive divisors of -8 are $1,2,4$, and 8 . Thus, the positive common divisors of 12 and -8 are 1,2 , and 4 ; hence, $\operatorname{gcd}(12,-8)=4$.

Theorem. Given any two integers a, b, their greatest common divisor $d=\operatorname{gcd}(a, b)$ exists.
Proof. We will prove this by construction, using Euclid's division lemma. Take a, b, and assume $a \geq b$. Call $r_{0}=b$. Use Euclid's division lemma to get $a=q_{1} b+r_{1}$. If $r_{1} \neq 0$, then define q_{2}, r_{2} by $r_{0}=b=q_{2} r_{1}+r_{2}$. If $r_{2} \neq 0$, then $r_{1}=q_{3} r_{2}+r_{3}$. Keep going until eventually, we get $r_{n-2}=q_{n} r_{n-1}+r_{n}$, where $r_{n}=0$. How do we know this is a finite process? This has to terminate bc $r_{1}>r_{2}>r_{3}>\ldots$ and the numbers are all ≥ 0.

Claim: $r_{n-1}=\operatorname{gcd}(a, b)$, where r_{n-1} is the last nonzero remainder.
Proof. (Of the claim) We need to show that $r_{n-1} \mid a$ and $r_{n-1} \mid b$ and that if $f \mid a$ and $f \mid b$, then $f \mid r_{n-1}$. Use induction to show that r_{n-1} divides r_{1} for any $0 \leq i \leq n-1$. Base case: $r_{n-1} \mid r_{n-2}$. We know $r_{n-2}=q_{n} r_{n-1}+0$, so $r_{n-1} \mid r_{n-2}$ by the definition of divides. Reverse induction step: Suppose r_{n-1} divides both r_{i} and r_{i+1}. We want to show it divides r_{i-1}. We know that $r_{i-1}=q_{i+1}\left(r_{i}\right)+r_{i+1}$. Since $r_{n-1} \mid r_{i}$, existsq $\mathrm{w} / r_{i}=q r_{n-1}$ and since $r_{n-1} \mid r_{i+1}$, $\exists q^{\prime}$ st $r_{i+1}=q^{\prime} r_{n-1}$. So,

$$
\begin{aligned}
r_{i-1} & =q_{i+1}\left(q r_{n-1}\right)+q^{\prime} r_{n-1} \\
& =\left[q_{i+1} \cdot q+q^{\prime}\right] r_{n-1}
\end{aligned}
$$

So, $r_{n-1} \mid r_{i-1}$ and $r_{n} \mid r_{0}=b$. Similarly, $r_{n-1} \mid a$.

Wednesday, 2018 August 28

Example 4. Use Euclid's Algorithm to find gcd(391, 272).

$$
\begin{array}{rlr}
\operatorname{gcd}(391,272) & =\operatorname{gcd}(272,119) & 391=272(1)+119 \\
& =\operatorname{gcd}(119,34) & 272=119(2)+34 \\
& =\operatorname{gcd}(34,17) & 119=34(3)+17 \\
& =17 &
\end{array}
$$

3 Extended Euclidean Algorithm

Theorem. If $\operatorname{gcd}(a, b)=d$, then $\exists x, y \in \mathbb{Z}$ st $a x+b y=d$.
Proof. Claim: $\exists x_{i}, y_{i}$ st $a x_{i}+b y_{i}=r_{i}$ for each r_{i} in Euclid's Algorithm.
Proof. Induct on i. Base case: let $i=1$. Recall from Euclid's Algorithm that $a=q_{1} b+r_{1}$. We can take $x_{1}=1$ and $y_{1}=q_{1}$. So, the base case holds. Inductive step: suppose the claim is true for all integers up to i. Namely, $\exists x_{i}, y_{i}$ where $a x_{i}+b y_{i}=r_{i}$. We want to show that the claim is true for r_{i+1}. Recall Euclid tells us that

$$
r_{i-1}=q_{i+1} r_{i}+r_{i+1} \quad(\star)
$$

We know $r_{i-1}=a x_{i-1}+b y_{i-1}$ and $r_{i}=a x_{i}+b y_{i}$ by the inductive step. Plugging them into (\star), we get

$$
a x_{i-1}+b y_{i-1}=q_{i+1}\left(a x_{i}+b y_{i}\right)+r_{i+1}
$$

So,

$$
r_{i+1}=\underbrace{\left(-q_{i+1} x_{i}+x_{i-1}\right)}_{x_{i+1}} a+\underbrace{\left(-q_{i+1} y_{i}+y_{i-1}\right)}_{y_{i+1}} b
$$

Both x_{i+1} and y_{i+1} are integers.

Example 5. Find x, y st $391 x+272 y=17$
We know from Example 2 that

$$
\begin{aligned}
17 & =119-3(34) \\
34 & =272-2(119) \\
119 & =391-1(272)
\end{aligned}
$$

So, we obtain the following result

$$
\begin{aligned}
17 & =119-3(34) \\
& =119-3(272-2(119)) \\
& =7(119)-3(272) \\
& =7(391-1(272))-3(272) \\
& =7(391)-10(272)
\end{aligned}
$$

So, $x=7, y=-10$.
Corollary. For any integers $a, b w / \operatorname{gcd}(a, b)=d$, then $\exists x, y$ st $a x+b y=c$ iff $d \mid c$.
Proof. (\Leftarrow) First, suppose $d \mid c$. By the definition of divides, $\exists e$ st $c=d e$. By Extended Euclid, $\exists x^{\prime}, y^{\prime}$ st $a x^{\prime}+b y^{\prime}=d$. Multiply by e :

$$
a \underbrace{\left(x^{\prime} e\right)}_{x}+b \underbrace{\left(y^{\prime} e\right)}_{y}=d e=c
$$

(\Rightarrow) Suppose $a x+b y=c$ for some $x, y \in \mathbb{Z}$. Since $d \mid a$ and $d \mid b($ from $\operatorname{gcd}(a, b)=d)$, we can write $a=d f$ and $b=d g$. Plug these into the linear combination to get

$$
(d f) x+(d g) y=c \Leftrightarrow d(f x+g y)=c .
$$

So, $d \mid c$ by definition.
Definition. We say p is prime if whenever $p=a b$, then either $a= \pm 1$ or $b= \pm 1$. We say that a, b are coprime or relatively prime if $\operatorname{gcd}(a, b)=1$.

Example 6 (p. 20). The positive divisors of 7 are 1 and 7 . The positive divisors of 27 are $1,3,9$, and 27 . Since 1 is the only positive common divisor of 7 and 27 , these two integers are coprime.

Theorem. If $\operatorname{gcd}(a, c)=1$ and $a \mid b c$, then $a \mid b$.
Proof. $\operatorname{Bc} \operatorname{gcd}(a, c)=1$, we know $\exists x, y$ st $a x+c y=1$. Multiply this through by b :

$$
a b x+c b y=b
$$

Since $a \mid b c, \exists e$ st $b c=a e$. Plug this in:

$$
\begin{aligned}
a b x+a e y & =b \\
a(b x+e y) & =b
\end{aligned}
$$

So, $a \mid b$.
Corollary. If p is a prime number and $p \mid a b$, then either $p \mid a$ or $p \mid b$.

Proof. If $p \mid a$, then we're done. Suppose $p \nmid a$. Since p is prime, $\operatorname{gcd}(p, a)=1$. By the theorem, $p \mid b$.

Theorem (The Fundamental Theorem of Arithmetic). If $n>1$ factors into prime numbers $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}$, then this factorization is unique.

Proof. Induct on n. Base case: let $n=2.2$ is prime, so this factorization is unique. So, the base case holds. Inductive step: suppose the theorem is true for all integers $m, 1<m<n$. We must consider two cases:

Case 1: n is prime. By the definition of prime, the factorization $n=n$ is a unique factorization into primes.

Case 2: n is not prime. This means $\exists a, b<n$ st $a b=n$. Since $a, b<n$, they factor uniquely as $a=q_{1} q_{2} \ldots q_{j}$ and $b=r_{1} r_{2} \ldots r_{\ell}$. We get a factorization of n now by concatenating these two factorizations and reordering.

$$
n=\left(q_{1} \ldots q_{j}\right)\left(r_{1} \ldots r_{\ell}\right)=p_{1} p_{2} \ldots p_{k}
$$

It remains to show that this factorization is unique. Suppose it isn't unique. This means that

$$
\begin{aligned}
n & =p_{1} p_{2} \ldots p_{k} \\
& =s_{1} s_{2} \ldots s_{j} \quad \text { (different factorization) }
\end{aligned}
$$

Take p_{1} so $p_{1} \mid s_{1} \ldots s_{j}$. Since p_{1} is prime, it must divide one of the s_{i} from this list. By the corollary, say it divides s_{i}. s_{i} is also prime and divisible by p_{1}. So $s_{i}=p_{1}$. Remove both of these numbers from the two factorizations.

$$
\frac{n}{p_{1}}=p_{2} p_{3 \ldots} p_{k}=s_{1} s_{2} \ldots s_{i-1} s_{i+1} \ldots s_{j}
$$

Since $\frac{n}{p_{1}}<n$, it has a unique factorization. So $k=j$ and the list of p_{i} is the same as the list of s_{i}.

Problem to think about: Let $\left\{F_{n}\right\}$ be the sequence of Fibonacci numbers. What is $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)$? How many steps does it take to compute w/ Euclid's Algorithm? Can you find other numbers smaller than F_{n} that require more steps?

