Number Theory Notes

Ernesto Diaz

October 21, 232019

DATE October 21, 2019
Euler's Theorem Says that $a^{\varphi(n)} \equiv 1(\bmod \mathrm{n})$ so this equation has a solution if b is the smallest positive integer such that $a^{b} \equiv 1(\bmod \mathrm{n})$ we call b the (multiplicative) order of a ($\bmod \mathrm{m}$) write this as $\operatorname{ord}_{m}(a)=b$ the book calls this a belongs to the exponent $\mathrm{b}(\bmod \mathrm{m})$
Definition: if $\operatorname{or} d_{m}(a)=b$ we call a a primitive root $\bmod \mathrm{m}$.
Example: Consider powers of $3(\bmod 10)$,

$$
\begin{aligned}
& 3^{1} \equiv 3(\bmod 10) \\
& 3^{2} \equiv 9(\bmod 10) \\
& 3^{3} \equiv 27 \equiv 7(\bmod 10) \\
& 3^{4} \equiv 81 \equiv 1(\bmod 10)
\end{aligned}
$$

So $\operatorname{ord}_{10}(3)=4=\varphi(10), 3$ is a primitive root $(\bmod 10)$.
Theorem: If $\operatorname{ord}_{m}(a)=b$ and $a^{r} \equiv 1(\operatorname{modn})$ then $n \mid r$.
Proof: Suppose it didn't ($n \nmid r$) us division with remainder to write $\mathrm{r}=\mathrm{qb}+\mathrm{s}$ where $0 \leq s \leq b, \mathrm{q}$ has to be at least 1 sonce $\mathrm{q}=0 \Rightarrow r<h 1 \equiv a^{r} \equiv a^{q b+s} \equiv$ $\left(a^{q b}\right) a^{s} \equiv(1) a^{s}(\operatorname{modn})$ so $a^{s} \equiv(\bmod n)$ since sjh this contradicts $\operatorname{ord}_{m}(a)=b$ Theorem: If g is a primitive root $(\bmod \mathrm{n})$ they $g^{1}, g^{2}, \ldots, g^{\varphi(m)}$ is reduced residue system $(\bmod n)$.

Proof:

Proof. Any reduced residue system $(\bmod m)$ has size $\varphi(m)$ so it suffices to show $g^{i} \not \equiv g^{j}(\bmod \mathrm{~m})$ if $1 \leq i<j \leq \varphi(m)$
Suppose for contradiction $g^{i} \equiv g^{j}(\bmod \mathrm{~m}) 1 \leq i<j \leq \varphi(m)$ this means $m \mid\left(g^{j}-g^{i}\right), g^{j}-g^{i}=g^{i}\left(g^{j-i}-1\right)$, so $m \mid g^{i}\left(g^{j-i}-1\right), \operatorname{gcd}\left(\mathrm{m}, g^{i}\right)=1$ since g is a primitive root $(\bmod \mathrm{n})$. so $m \mid\left(g^{j-i}-1\right) \Longleftrightarrow g^{j-i} \equiv 1(\bmod \mathrm{n})$. $1 \leq j-i<\varphi(m)$
This contradicts g being a primitive root since $\operatorname{ord}_{m}(g) \leq j-i<\varphi(m)$
Theorem: if $\operatorname{ord}_{m}(a)=\mathrm{h}$ and $\operatorname{gcd}(\mathrm{h}, \mathrm{k})=\mathrm{d}$ then $\operatorname{ord}_{m}\left(a^{k}\right)=\mathrm{h} / \mathrm{k}$
Example: $\operatorname{ord}_{10}(3)=\varphi=4, \mathrm{k}=2, \operatorname{gcd}(4,2)=2, \operatorname{ord}_{10}(9)=\operatorname{ord}_{10}\left(3^{2}\right)=$ $\operatorname{ord}_{10}\left(3^{k}\right)=2=4 / 2$.

Proof. Call $h_{1}=\mathrm{h} / \mathrm{d}$ and $k_{1}=\mathrm{k} / \mathrm{d}$.
Our goal is to get $\operatorname{ord}_{m}\left(a^{k}\right)=h_{1}$ suppose $\operatorname{ord} d_{m}\left(a^{k}\right)=\mathrm{j}$, this means $a^{k j}=\left(a^{k}\right)^{j} \equiv 1(\operatorname{modn})$
so $a^{k j} \equiv 1(\bmod \mathrm{n})$
by out first theorem $h \mid k j \Longleftrightarrow \mathrm{hq}=\mathrm{kj} \Longleftrightarrow \mathrm{d} h_{1} \mathrm{q}=\mathrm{d} k_{1} \mathrm{j} \Longleftrightarrow h_{1} \mathrm{q}=$ $k_{1} \mathrm{j} \Longleftrightarrow$ so $h_{1} \mid k_{1} j$. Since $\operatorname{gcd}\left(h_{1}, k_{1}=1\right.$, so $h_{1} \mid j$.
Now consider $\left(a^{k}\right)^{h_{1}} \equiv a^{k h_{1}} \equiv\left(a^{h_{1} d k_{1}}\right) \equiv\left(a^{h k_{1}}\right) \equiv\left(a^{h}\right)^{k_{1}} \equiv(1)^{k_{1}}(\bmod \mathrm{~m})$.
So $j \mid h_{1}$. This tells us that $\mathrm{j}=h_{1}=\mathrm{h} / \mathrm{d}$
Corollary: If g is a primitive root $(\bmod \mathrm{m})$, then g^{k} is a primitive root $\bmod (\mathrm{m})$ if and only if $\operatorname{gcd}(\mathrm{k}, \varphi)=1$.
Example : $\mathrm{m}=10,3$ is a primitive root $\varphi(10)=4, \operatorname{gcd}(3,4)=1$ so $3^{3} \equiv 7(\bmod$ $10)$ is also a primitive root,

$$
\begin{aligned}
& 7^{1} \equiv 7(\bmod 10) \\
& 7^{2} \equiv 49 \equiv 9(\bmod 10) \\
& 7^{3} \equiv 63 \equiv 3(\bmod 10) \\
& 7^{4} \equiv 21 \equiv 1(\bmod 10)
\end{aligned}
$$

Corollary: If g is a primitive $\operatorname{root}(\bmod \mathrm{m})$ then g^{-1} is alos a primitive root (mod m)
Theorem: if m has at least one primitive root g then it has exactly $\varphi(\varphi(m))$ many distinct primitive roots.

Proof. Since g is a primitive root $g^{1}, g^{2}, \ldots, g^{\varphi(m)}$ form a reduced residue system, so every primitive root is one of these numbers.
g^{i} is a primitive root if and only if $\operatorname{gcd}(\mathrm{i}, \varphi=1$. count the number of $\mathrm{i} \in$ $1,2, \ldots, \varphi(m)$ with $\operatorname{gcd}(\mathrm{i}, \varphi=1$ this count is $\varphi(\varphi(m))$

Example: $\varphi(\varphi(10))=\varphi(4))=\varphi\left(2^{2}\right)=2,10$ has 2 primitive roots 3 and 7.

DATE October 23, 2019
Theorem: if p is prime then there exists a primitive root $(\bmod p)$. Note: This means that some $\mathrm{a}(\bmod \mathrm{p})$ has $\operatorname{ord}_{p}(a)=\varphi(\mathrm{p})=\mathrm{p}-1$.
By our theorem there are $\varphi(\varphi(m))$ many primitive roots. Recall that the order of any element will divide $\mathrm{p}-1$ since $a^{p-1} \equiv 1(\bmod \mathrm{p})$ (Fermat's little theorem).
if $\operatorname{ord}_{p}(a)=\mathrm{r}$, then $r \mid p$ for each $h \mid p-1$, let $\mathrm{N}(\mathrm{h})=\left\{1 \leq a \leq p \mid \operatorname{ord}_{p}(a)=\right.$ $h\}$
Example: $\mathrm{p}=7$

a	1	2	3	4	5	6
$\operatorname{ord}_{p}(a)$	1	3	6	3	6	2

$\sum_{i=1}^{\infty} N(h)=\mathrm{p}-1$
Claim: $\mathrm{N}(\mathrm{h})$ is either 0 or $\varphi(\mathrm{h})$
If no element has order h then $\mathrm{N}(\mathrm{h})=0$
so suppose at least one element $\mathrm{a}(\bmod \mathrm{p})$ has $\operatorname{ord}_{p}(a)=h$
consider rots of $x^{n}-1 \equiv 0(\bmod \mathrm{p}) \Longleftrightarrow x^{n} \equiv 1(\bmod \mathrm{p})$
this has at most h (distinct) roots (mod p) by Lagrange's Theorem, $a^{1}, a^{2}, \ldots, a^{h}$
are all roots of this equation.
pick one a^{i}, plug it in $\left(a^{i}\right)^{n}-1 \equiv\left(a^{n}\right)^{i}-1 \equiv 1^{i}-1(\bmod p)$
these are all distinct so all of the elements with order $\mathrm{h}(\bmod \mathrm{p})$ are contained in $\left\{a^{1}, a^{2}, \ldots, a^{h}\right\}$
Recall: The order of a^{i} is $\mathrm{h} / \operatorname{gcd}(\mathrm{i}, \mathrm{h})$ since the order of a is h .
so we need ot count $\mathrm{i} \in\{1,2, \ldots, h\}$ with $\operatorname{gcd}(\mathrm{i}, \mathrm{h})=1$
this is $\varphi(\mathrm{n})$ by definition.
$\mathrm{N}(\mathrm{h})=$

$$
\begin{cases}0 & \text { Nothing has order } \mathrm{h} \\ \varphi(n) & \text { Something has order } \mathrm{h}\end{cases}
$$

$\mathrm{N}(\mathrm{h}) \leq \varphi(n)$
$\mathrm{p}-1=\sum_{h \mid p-1} N(h) \leq \sum_{h \mid p-1} \varphi(h)$
Recall: $\sum_{d \mid n} \varphi(n)=\mathrm{n}$
Since both sides of this inequality are p-1 we must have $N(h)=\varphi(h)$ for all h. So $\mathrm{N}(\mathrm{p}-1)=\varphi(p-1) \geq 1$.

Since $N(p-1)$ \& 0 , there exists an element with order $\mathrm{p}-1$ which is a primitive root by definition

Proof Complete.

How many primes are there?

One Answer: Infinitely Many! proved by Euclid.
Proof. Suppose there is a finite list of primes $p_{1}, p_{2}, \ldots, p_{k}$, where p_{k} us the last one.
Compute $\mathrm{N}=p_{1} * p_{2} * \cdots * p_{k}$
Product of all primes.
what are the prime factors of $\mathrm{N}+1$?
This number can't be divisible by any of $p_{1}, p_{2}, \ldots, p_{k}$, so it is either prime or divisible by a prime not in our list.

Note: if $p_{1} * p_{2} * \cdots * p_{k}$, are the first k primes it isn't necessarily true that $\left(p_{1} * p_{2} * \cdots * p_{k}\right)+1$ is a prime.
Define: $\pi(\mathrm{x})=$ the number of primes less than or equal to x .
Example $\pi(10)=4, \pi(11)=5, \pi(12)=5$
Theorem:

$$
\lim _{x \rightarrow \infty} \varphi(x)=\infty
$$

Proof: Proof for this is the same proof as Euclid's proof above.

