Number Theory Notes

Ernesto Diaz

October 21, 23 2019

DATE October 21, 2019

Euler's Theorem Says that $a^{\varphi(n)} \equiv 1 \pmod{n}$ so this equation has a solution if b is the smallest positive integer such that $a^b \equiv 1 \pmod{n}$ we call b the (multiplicative) order of a (mod m) write this as $ord_m(a) = b$ the book calls this a belongs to the exponent b(mod m)

Definition: if $ord_m(a) = b$ we call a a primitive root mod m. Example: Consider powers of $3 \pmod{10}$,

> $3^{1} \equiv 3(mod10)$ $3^{2} \equiv 9(mod10)$ $3^{3} \equiv 27 \equiv 7(mod10)$ $3^{4} \equiv 81 \equiv 1(mod10)$

So $ord_{10}(3) = 4 = \varphi(10)$, 3 is a primitive root (mod 10).

Theorem: If $ord_m(a) = b$ and $a^r \equiv 1 \pmod{b}$ then $n \mid r$.

Proof: Suppose it didn't $(n \nmid r)$ us division with remainder to write r=qb+s where $0 \leq s \leq b$, q has to be at least 1 sonce q=0 $\Rightarrow r < h \ 1 \equiv a^r \equiv a^{qb+s} \equiv (a^{qb})a^s \equiv (1)a^s \pmod{9}$ so $a^s \equiv \pmod{9}$ since sight this contradicts $ord_m(a) = b$ **Theorem:** If g is a primitive root (mod n) they $g^1, g^2, \ldots, g^{\varphi(m)}$ is reduced residue system (mod n).

Proof:

Proof. Any reduced residue system (mod m) has size $\varphi(m)$ so it suffices to show $g^i \not\equiv g^j \pmod{m}$ if $1 \leq i < j \leq \varphi(m)$

Suppose for contradiction $g^i \equiv g^j \pmod{m}$ $1 \leq i < j \leq \varphi(m)$ this means $m \mid (g^j - g^i), g^j - g^i = g^i(g^{j-i} - 1), \text{ so } m \mid g^i(g^{j-i} - 1), \gcd(m, g^i) = 1$ since g is a primitive root (mod n). so $m \mid (g^{j-i} - 1) \iff g^{j-i} \equiv 1 \pmod{n}$. $1 \leq j - i < \varphi(m)$

This contradicts g being a primitive root since $ord_m(g) \leq j - i < \varphi(m)$ \Box

Theorem: if $ord_m(a) = h$ and gcd(h,k)=d then $ord_m(a^k)=h/k$ Example: $ord_{10}(3) = \varphi = 4$, k = 2, gcd(4,2) = 2, $ord_{10}(9) = ord_{10}(3^2) = ord_{10}(3^k) = 2 = 4/2$.

Proof. Call $h_1 = h/d$ and $k_1 = k/d$. Our goal is to get $ord_m(a^k) = h_1$ suppose $ord_m(a^k) = j$, this means $a^{kj} = (a^k)^j \equiv 1 \pmod{n}$ so $a^{kj} \equiv 1 \pmod{n}$ by out first theorem $h \mid kj \iff hq = kj \iff dh_1q = dk_1j \iff h_1q = k_1j \iff so h_1 \mid k_1j$. Since $gcd(h_1, k_1 = 1, so h_1 \mid j$. Now consider $(a^k)^{h_1} \equiv a^{kh_1} \equiv (a^{h_1dk_1}) \equiv (a^{h_k}) \equiv (a^h)^{k_1} \equiv (1)^{k_1} \pmod{m}$. So $j \mid h_1$. This tells us that $j = h_1 = h/d$

Corollary: If g is a primitive root (mod m), then g^k is a primitive root mod(m) if and only if $gcd(k,\varphi)=1$.

Example : m=10, 3 is a primitive root $\varphi(10) = 4$, gcd(3,4) =1 so $3^3 \equiv 7 \pmod{10}$ is also a primitive root,

$$7^{1} \equiv 7(mod10)$$

$$7^{2} \equiv 49 \equiv 9(mod10)$$

$$7^{3} \equiv 63 \equiv 3(mod10)$$

$$7^{4} \equiv 21 \equiv 1(mod10)$$

Corollary: If g is a primitive root(mod m) then g^{-1} is alos a primitive root (mod m)

Theorem: if m has at least one primitive root g then it has exactly $\varphi(\varphi(m))$ many distinct primitive roots.

Proof. Since g is a primitive root $g^1, g^2, \ldots, g^{\varphi(m)}$ form a reduced residue system, so every primitive root is one of these numbers.

 g^i is a primitive root if and only if $gcd(i,\varphi=1)$ count the number of $i \in [1, 2, ..., \varphi(m)]$ with $gcd(i,\varphi=1)$ this count is $\varphi(\varphi(m))$

Example: $\varphi(\varphi(10)) = \varphi(4) = \varphi(2^2) = 2$, 10 has 2 primitive roots 3 and 7.

DATE October 23, 2019

Theorem: if p is prime then there exists a primitive root (mod p). Note: This means that some a(mod p) has $ord_p(a) = \varphi(p) = p-1$.

By our theorem there are $\varphi(\varphi(m))$ many primitive roots. Recall that the order of any element will divide p-1 since $a^{p-1} \equiv 1 \pmod{p}$ (Fermat's little theorem).

if $ord_p(a) = r$, then $r \mid p$ for each $h \mid p-1$, let $N(h) = \{1 \le a \le p \mid ord_p(a) =$ h

Example: p=7 $\sum_{i=1}^{\infty} N(h) = \mathbf{p} - 1$ *Claim:* N(h) is either 0 or $\varphi(h)$ If no element has order h then N(h)=0so suppose at least one element $a \pmod{p}$ has $ord_p(a) = h$ consider rots of $x^n - 1 \equiv 0 \pmod{p} \iff x^n \equiv 1 \pmod{p}$ this has at most h (distinct) roots (mod p) by Lagrange's Theorem, a^1, a^2, \ldots, a^h are all roots of this equation. pick one a^i , plug it in $(a^i)^n - 1 \equiv (a^n)^i - 1 \equiv 1^i - 1 \pmod{p}$ these are all distinct so all of the elements with order h(mod p) are contained in $\{a^1, a^2, \dots, a^h\}$ Recall: The order of a^i is h/gcd(i,h) since the order of a is h. so we need ot count $i \in \{1, 2, \dots, h\}$ with gcd(i,h) = 1this is $\varphi(n)$ by definition. N(h) =

 $\begin{cases} 0 & \text{Nothing has order h} \\ \varphi(n) & \text{Something has order h} \end{cases}$

 $N(h) \le \varphi(n)$ $p-1 = \sum_{h|p-1} N(h) \le \sum_{h|p-1} \varphi(h)$ Recall: $\sum_{d|n} \varphi(n) = n$

Since both sides of this inequality are p-1 we must have $N(h) = \varphi(h)$ for all h. So N(p-1) = $\varphi(p-1) > 1$.

Since $N(p-1) \neq 0$, there exists an element with order p-1 which is a primitive root by definition

Proof Complete.

How many primes are there?

One Answer: Infinitely Many! proved by Euclid.

Proof. Suppose there is a finite list of primes p_1, p_2, \ldots, p_k , where p_k us the last one.

Compute $N = p_1 * p_2 * \cdots * p_k$

Product of all primes.

what are the prime factors of N+1?

This number can't be divisible by any of p_1, p_2, \ldots, p_k , so it is either prime or divisible by a prime not in our list.

Note: if $p_1 * p_2 * \cdots * p_k$, are the first k primes it isn't necessarily true that $(p_1 * p_2 * \cdots * p_k)+1$ is a prime.

Define: $\pi(\mathbf{x}) =$ the number of primes less than or equal to \mathbf{x} . Example $\pi(10) = 4$, $\pi(11) = 5$, $\pi(12) = 5$ **Theorem:**

$$\lim_{x \to \infty} \varphi(x) = \infty$$

Proof: Proof for this is the same proof as Euclid's proof above.