Week 8 Notes: 2019 October 14-16

MATH 465/565
Towson University
Monday, 2019 October 14

Theorem. If $f(x)$ is multiplicative and $g(n)=\sum_{d \mid n} f(d)$, then $g(n)$ is multiplicative and vice-versa, so if $g(n)$ is multiplicative, then $f(n)$ is as well.

Proof. Suppose $g(n)$ is multiplicative and assume $\operatorname{gcd}(m, n)=1$. Then,

$$
f(m n)=\sum_{d \mid m n} g(d)
$$

Since m and n are relatively prime, we can separate each divisor d of $m n$ into unique factors e and h such that e is a divisor of m and h is a divisor of n; notice that $\operatorname{gcd}(e, h)=1$. So,

$$
\begin{aligned}
f(m, n) & =\sum_{e \mid m} \sum_{h \mid n} g(e h) \\
& =\sum_{e \mid m} g(e) \sum_{h \mid n} g(h) \\
& =f(m) f(n) .
\end{aligned}
$$

So, f is also multiplicative.
Now, suppose $f(n)$ is multiplicative. Then, by Theorem 6-6 (p. 87) -this states that if two arithmetic functions $f(n)$ and $g(n)$ satisfy one of the two conditions: $f(n)=\sum_{d \mid n} g(d)$ and $g(n)=\sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right)$ for each n, then they satisfy both conditions-we have that

$$
g(m n)=\sum_{d \mid m n} \mu(d) f\left(\frac{m n}{d}\right) .
$$

Hence, following an argument similar to that in the initial direction,

$$
\begin{aligned}
g(m n) & =\sum_{e \mid m} \sum_{h \mid n} \mu(e h) f\left(\frac{m n}{e h}\right) \\
& =\sum_{e \mid m} \sum_{h \mid n} \mu(e) \mu(h) f\left(\frac{m}{e}\right) f\left(\frac{n}{h}\right) \\
& =\sum_{e \mid m} \mu(e) f\left(\frac{m}{e}\right) \sum_{h \mid n} \mu(h) f\left(\frac{n}{h}\right) \\
& =g(m) g(n) .
\end{aligned}
$$

So, g is also multiplicative.

Example 1. $f(n)=n$ is multiplicative since $f(n m)=f(n) f(m)$ if $\operatorname{gcd}(m, n)=1$.
Since $n=f(n)=\sum_{d \mid n} \varphi(n) \Longrightarrow \varphi(n)$ is multiplicative.
$\sigma(n)=\sum_{d \mid n} d=\sum_{d \mid n} f(d) \Longrightarrow \sigma$ is multiplicative.
The majority of class was spent examining one of Euler's first papers regarding Fermat's theorem (see worksheet).

Wednesday, 2019 October 16

Definition. Call a Gaussian integer $(a+b i)=z$ a unit if there exists another Gaussian integer w with $z \cdot w=1$.

Ignore units when talking about unique factorization (same is true with any ring).

1 Eisenstein integers

This topic was covered in a talk given in class on this day. As a brief overview, we have that Eisenstein integers are of the form $\omega=e^{\frac{i \pi}{2}}$. The collection of Eisenstein integers can be described as $\{a+b \omega \mid a, b \in \mathbb{Z}\}$. Eisenstein integers have unique factorization.

Units in Gaussian integers are $\{1,-1, i,-i\}$; units in Eisenstein integers are $\left\{1, \omega, \omega^{2}=\right.$ $\overline{-\omega},-\omega, \bar{\omega},-1\}$. The Eisenstein integers are defined over a triangular lattice.

