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1 September 30

1.1 Combinatorial study of ¢(n)
¢(p) = p— 1if p is prime.

#(p?) = p(p — 1) because we get p sets of p-1 numbers

P(p*) =p*~'(p—1)
Of the numbers up to p®, p of them are divisible by p, which is p®*~! numbers.
Subtracting these from the total number of numbers, Otop® — 1 = p®.

Thus ¢(p*) =p* —p*~ ' =p*~(p—1)

1.2 Observation

— oWty
k=0

Ye3

= o(1) + (0 - 1)L
= o(1) = (1-p")
=o(1) —1+p"

= pn

Because this is a power of p, we can rewrite this as

Zd\pn ¢(d) =p"



1.3 Theorem

For any positive integer n, Zd‘pn o(d) =n

e Example: n = 20
d|20,d = {1,2,4,5,10,20}

D d(d) = d(1) + &(2) + d(4) + 6(5) + ¢(10) + $(20)

d|20
=14+1+24+4+4+8
=20

Proof: Let Ty = {1 < i < n|ged(i,n) = d}
Example:

n=20,d=5

T5 = {57 15}v |T5‘ =2

Because every integer from 1 to n occurs in exactly one set,
Zd\n ‘Td| =n

Continuing the example of n = 20,
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This helps us to create the following sets.
7 ={1,3,7,9,11,13,17,19}

T, = {2,6,14,18}
T, = {4,8,12,16}

T; = {5,15}
7,0 = {10}
T30 = {20}

The sizes of these sets correspond the various ¢(d) values below.

T1] = ¢(20) = 8
T2 = ¢(10) = 4
Ta| = ¢(5) =4
5] = ¢(4) =2
T 0[ = ¢(2) =1
T20[ = ¢(1) =1

Then the total number of numbers, 1-20 can be calculated from the sizes of
these sets. That is, |T1| + |To| + |Tu| + |T —5 | + |T10| + |T20| = 20

So what is |Ty|?

n

Ty ={ad|l <a < d,gcd(a,g ~ 1)}
(T4 = {ad|L < a < 2, ged(a, > = 1)}]
n
— (%)
Thus,
n="> |T4
d|n
n n
= dZ: (p(a) = ZI: o(e)wheree = Esoed =n

n =73, () is what we wanted to prove.



1.4 Mobius Function

The Mobius function, p(n) is another example of an arithmetic function. The
function is defined as follows

0 if p?|n for any prime p
1 if n is divisible by an even number of primes

—1 if n is divisible by an odd number of primes

Another function, w(n) = the number of prime factors of n can be used to de-
fine the Mobius function in a slightly different way.

0 if p?|n
(=1)“(™  otherwise

Examples

e 1(20) =0

o 1(30) = (~1)° = -1

e u(l)=0

e u(p) = —1 where p is prime

1.5 Theorem

¢(n) = 341, 1(d) () = X g1, 1(5)(d) = n(TLyp, (1 — ) where p is prime.
Example: ¢(20) =8
d20 = {1,2,4,5,10,20}

L d[md) ] 7]
1 1 20
2 -1 10
4 0 5
5 -1 4
10 1 2
20 0 1
S () = 3 (2
d|n d|20
= 1(20) — 1(10) + 0(5) — 1(4) + 1(2) + 0(1)
=20—-10—4+2
—3



Using the other formula:

2 October 2

2.1 Theorem

o(n) =>4, M(d) (G = nll,a(1— Il)) Proof: Induction on the number of distinc-
tive prime factors of n, w(n)
Base Case: n = 1 holds vacuously because n = p® has 1 prime factor.

We already know ¢(p®) = p* — p®~1 = p*(1 — %)

Check that these formulas hold:

d|pe =0 pl
0y P” 1, P
=p(p") 5 +ulp )T
w( )po w( )p1
:paipafl
1
=p*(1—--)
p

Thus this formula works. Now for the product formula:

1 1

p?II(l1 — = =p%(1— =
( p ( p)

Both formulas work when n has one prime factor.

Induction Step: Now suppose both formulae hold when n has k prime fac-
tors.

Suppose n has k 4+ 1 prime factors, and suppose p is a prime factor.
n = p*-n' where ptn’

wn) = k+ 1L,w(n’) = k. n' has one fewer prime factors than n. Thus our



formulae hold for n’.
Count integers up to n, coprime to n. This is what ¢(n) is.

Take the n integers up to n, and divide them into p® chunks of n’ consecu-
tive integers. This creates p® subintervals.

Within each subinterval, there are ¢(n’) many integers coprime to n'.
In total we have p®(¢(n)) many integers that are coprime to n’ between 1 and n.

But we need to remove the multiples of p to get the number of integers co-
prime to n instead of n'.

]% of these numbers are divisible by p.

Thus, p*(3) = p*~*

p*~ 1. ¢(n’) of these numbers are divisible by p.
Then ¢(n) = p*d(n') — p*~'o(n’).
We want to show that this is equal to our formulae.

1. Since ¢(n') = 0’y (1 — &

1 1
P(n) = p*(n' )y (1 — 6) —p* '/, (1 — a) At this point we know p®(n’) =n so

o(n) = (T (1 — §> - %quu - g»
1 1
= n<Hq|n’(1 - a) - Hq\n’(l - 6))
1
= ’I’LHq|n(1 — E)

2. Want to show ¢(n) = 3_,, u(d)%
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Then the following expression evaluates to zero because of the definition of the
Mobius function. Each sum over a value of d where d is some divisor of n'.

22 npta HPP D) 535 + 2o pra (PP D) 58 + o+ 2o pra MDY d) iig
Then every divisor e of n looks like e = p‘d where p{d

o(n) = Ze|n p(e)% which is what we wanted to prove.

2.2 Corollary

If n = p" py?..pp* then ¢(n) = ¢(pi")d(p3?)...o(pe")

Proof:
1
¢(n) = nlly;, (1 - =
p
1 1 1
= ps2 (1= —)(1— —)(1— —
Pripe® Pyt ( pl)( pQ) ( pk)

1 1 o 1
= P(fl(l - p*l)PgQ(l - p:)mpkk(l - —)

Pk
= o(p1")o(p3?).-o(Py*)
by definition of ¢ for prime numbers ¢(p®) = p*(1 — %)

2.3 Theorem
Ifn = p{'ps?..pp* then d(n) = (a1 +1)(az+1)...(c+1 = d(pT*)d(p5?)...d(py*)



Proof: if n = p®, then d(p®) = #{p'[p®} = a +1
Now suppose n = p{"' p3*...pp*
Any divisor d|n where d = p11p§2...pf’“
For each i, the possible values of §; are 0 < 3; < oy
So there are (a; + 1) possibilities for the value of 3;
The total number of divisors of n, d(n) = (aq1+1)(ae+1)...(c+1 = d(p7*)d(p3?)...d(pp*)
2.4 Definition

We say that f(n) is multiplicative if f(nm) = f(n)f(m) whenever ged(n,m) =1

Example:
Both ¢(n) and d(n) are multiplicative.

2.5 Theorem

o(n) = > 4, d is multiplicative.

o N a a+l
S0 0 (3 P37 p(*) = o (e (pg) o () = (Porgd) - (P
a1l
So a(p*) = (P )
Proof:
Prime powers:
« i a4l at1_
U(pa) = Zi:op =1 1p_p = pp_l !
Now write n = Ik where ged(l, k) =1
If d|n, we can write d = ef where e|l and f|k
o(n) = Zd
d|n
= Z ef
efld,e|l,f|k
= Q_aQ_ fIkf)
ell
= o(l)o(k)



Therefore o is a multiplicative function.

Example:

0(12)p: 1+24+34+44+64+12=28
o(3)o(4)=(14+3)(1+24+4)=(4)(7) =28
0(12) =0(3)o(4)

The function s(n) is not multiplicative.

12)=1+2+3+4+6=16
3)s(4) = (1)(1+2) =3



