Class Notes

Connor Gephart

September 30-October 22019

1 September 30

1.1 Combinatorial study of $\phi(n)$

$\phi(p)=p-1$ if p is prime.
$\phi\left(p^{2}\right)=p(p-1)$ because we get p sets of $\mathrm{p}-1$ numbers
$\phi\left(p^{\alpha}\right)=p^{\alpha-1}(p-1)$
Of the numbers up to p^{α}, p of them are divisible by p , which is $p^{\alpha-1}$ numbers.
Subtracting these from the total number of numbers, $0 t o p^{\alpha}-1=p^{\alpha}$.
Thus $\phi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}=p^{\alpha-1}(p-1)$

1.2 Observation

$$
\begin{aligned}
\sum_{k=1}^{n} \phi\left(p^{k}\right) & =\phi(1)+\sum_{k=1}^{n} \phi\left(p^{k}\right) \\
& =\phi(1)+\sum_{k=1}^{n} p^{k-1}(p-1) \\
& =\phi(1)+(p-1) \sum_{k=1}^{n} p^{k-1} \\
& =\phi(1)+(p-1) \sum_{k=0}^{n-1} p^{k} \\
& =\phi(1)+(p-1) \frac{1-p^{n}}{1-p} \\
& =\phi(1)-\left(1-p^{n}\right) \\
& =\phi(1)-1+p^{n} \\
& =p^{n}
\end{aligned}
$$

Because this is a power of p, we can rewrite this as
$\sum_{d \mid p^{n}} \phi(d)=p^{n}$

1.3 Theorem

For any positive integer $\mathrm{n}, \sum_{d \mid p^{n}} \phi(d)=n$

- Example: $n=20$
$d \mid 20, d=\{1,2,4,5,10,20\}$

$$
\begin{aligned}
\sum_{d \mid 20} \phi(d) & =\phi(1)+\phi(2)+\phi(4)+\phi(5)+\phi(10)+\phi(20) \\
& =1+1+2+4+4+8 \\
& =20
\end{aligned}
$$

Proof: Let $T_{d}=\{1 \leq i \leq n \mid \operatorname{gcd}(i, n)=d\}$
Example:
$n=20, d=5$
$T_{5}=\{5,15\},\left|T_{5}\right|=2$
Because every integer from 1 to n occurs in exactly one set, $\sum_{d \mid n}\left|T_{d}\right|=n$

Continuing the example of $n=20$,

i	$g c d(i, n)$
1	1
2	2
3	1
4	4
5	5
6	2
7	1
8	4
9	1
10	10
11	1
12	4
13	1
14	2
15	5
16	4
17	1
18	2
19	1
20	20

This helps us to create the following sets.

$$
\begin{aligned}
T_{1} & =\{1,3,7,9,11,13,17,19\} \\
T_{2} & =\{2,6,14,18\} \\
T_{4} & =\{4,8,12,16\} \\
T_{5} & =\{5,15\} \\
T_{1} 0 & =\{10\} \\
T_{2} 0 & =\{20\}
\end{aligned}
$$

The sizes of these sets correspond the various $\phi(d)$ values below.

$$
\begin{aligned}
\left|T_{1}\right| & =\phi(20)=8 \\
\left|T_{2}\right| & =\phi(10)=4 \\
\left|T_{4}\right| & =\phi(5)=4 \\
\left|T_{5}\right| & =\phi(4)=2 \\
\left|T_{1} 0\right| & =\phi(2)=1 \\
\left|T_{2} 0\right| & =\phi(1)=1
\end{aligned}
$$

Then the total number of numbers, 1-20 can be calculated from the sizes of these sets. That is, $\left|T_{1}\right|+\left|T_{2}\right|+\left|T_{4}\right|+\left|T-_{5}\right|+\left|T_{1} 0\right|+\left|T_{2} 0\right|=20$

So what is $\left|T_{d}\right|$?

$$
\begin{aligned}
T_{d} & =\left\{a d \left\lvert\, 1 \leq a \leq \frac{n}{d}\right., \operatorname{gcd}\left(a, \frac{n}{d}=1\right)\right\} \\
\left|T_{d}\right| & =\left|\left\{a d \left\lvert\, 1 \leq a \leq \frac{n}{d}\right., \operatorname{gcd}\left(a, \frac{n}{d}=1\right)\right\}\right| \\
& =\phi\left(\frac{n}{d}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
n & =\sum_{d \mid n}\left|T_{d}\right| \\
& =\sum_{d \mid n} \phi\left(\frac{n}{d}\right) \quad=\sum_{e \mid n} \phi(e) \text { wheree }=\frac{n}{d} \text { soed }=n
\end{aligned}
$$

$n=\sum_{e \mid n} \phi(e)$ is what we wanted to prove.

1.4 Mobius Function

The Mobius function, $\mu(n)$ is another example of an arithmetic function. The function is defined as follows

$$
\begin{cases}0 & \text { if } p^{2} \mid n \text { for any prime } p \\ 1 & \text { if } n \text { is divisible by an even number of primes } \\ -1 & \text { if } n \text { is divisible by an odd number of primes }\end{cases}
$$

Another function, $\omega(n)=$ the number of prime factors of n can be used to define the Mobius function in a slightly different way.

$$
\begin{cases}0 & \text { if } p^{2} \mid n \\ (-1)^{\omega(n)} & \text { otherwise }\end{cases}
$$

Examples:

- $\mu(20)=0$
- $\mu(30)=(-1)^{3}=-1$
- $\mu(1)=0$
- $\mu(p)=-1$ where p is prime

1.5 Theorem

$\phi(n)=\sum_{d \mid n} \mu(d)\left(\frac{n}{d}\right)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right)(d)=n\left(\Pi_{p \mid n}\left(1-\frac{1}{p}\right)\right)$ where p is prime.
Example: $\phi(20)=8$
$d \mid 20=\{1,2,4,5,10,20\}$

d	$\mu(d)$	$\frac{n}{d}$
1	1	20
2	-1	10
4	0	5
5	-1	4
10	1	2
20	0	1

$$
\begin{aligned}
\sum_{d \mid n} \mu\left(\frac{n}{d}\right)(d) & =\sum_{d \mid 20} \mu\left(\frac{20}{d}\right. \\
& =1(20)-1(10)+0(5)-1(4)+1(2)+0(1) \\
& =20-10-4+2 \\
& =8
\end{aligned}
$$

Using the other formula:

$$
\begin{aligned}
n\left(\Pi_{p \mid n}\left(1-\frac{1}{p}\right)\right) & =20\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right) \\
& =20\left(\frac{1}{2}\right)\left(\frac{4}{5}\right) \\
& =20\left(\frac{4}{10}\right. \\
& =\frac{80}{10}=8
\end{aligned}
$$

2 October 2

2.1 Theorem

$\phi(n)=\sum_{d \mid n} \mu(d)\left(\frac{n}{d}=n \Pi_{p \mid d}\left(1-\frac{1}{p}\right)\right.$ Proof: Induction on the number of distinctive prime factors of $n, \omega(n)$
Base Case: $n=1$ holds vacuously because $n=p^{\alpha}$ has 1 prime factor.
We already know $\phi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}=p^{\alpha}\left(1-\frac{1}{p}\right)$
Check that these formulas hold:

$$
\begin{aligned}
\sum_{d \mid p^{\alpha}} \mu(d) \frac{p^{\alpha}}{d} & =\sum_{i=0}^{\alpha} \mu\left(p^{i}\right) \frac{p^{\alpha}}{p^{i}} \\
& =\mu\left(p^{0}\right) \frac{p^{\alpha}}{p^{0}}+\mu\left(p^{1}\right) \frac{p^{\alpha}}{p^{1}} \\
& =p^{\alpha}-p^{\alpha-1} \\
& =p^{\alpha}\left(1-\frac{1}{p}\right)
\end{aligned}
$$

Thus this formula works. Now for the product formula:

$$
p^{\alpha} \Pi\left(1-\frac{1}{p}=p^{\alpha}\left(1-\frac{1}{p}\right)\right.
$$

Both formulas work when n has one prime factor.
Induction Step: Now suppose both formulae hold when n has k prime factors.

Suppose n has $k+1$ prime factors, and suppose p is a prime factor.
$n=p^{\alpha} \cdot n^{\prime}$ where $p \nmid n^{\prime}$
$\omega(n)=k+1, \omega\left(n^{\prime}\right)=k . n^{\prime}$ has one fewer prime factors than n. Thus our
formulae hold for n^{\prime}.

Count integers up to n, coprime to n. This is what $\phi(n)$ is.
Take the n integers up to n, and divide them into p^{α} chunks of n^{\prime} consecutive integers. This creates p^{α} subintervals.

Within each subinterval, there are $\phi\left(n^{\prime}\right)$ many integers coprime to n^{\prime}.
In total we have $p^{\alpha}(\phi(n))$ many integers that are coprime to n^{\prime} between 1 and n.
But we need to remove the multiples of p to get the number of integers coprime to n instead of n^{\prime}.
$\frac{1}{p}$ of these numbers are divisible by p.
Thus, $p^{\alpha}\left(\frac{1}{p}\right)=p^{\alpha-1}$
$p^{\alpha-1} \cdot \phi\left(n^{\prime}\right)$ of these numbers are divisible by p .
Then $\phi(n)=p^{\alpha} \phi\left(n^{\prime}\right)-p^{\alpha-1} \phi\left(n^{\prime}\right)$.
We want to show that this is equal to our formulae.

1. Since $\phi\left(n^{\prime}\right)=n^{\prime} \Pi_{q \mid n^{\prime}}\left(1-\frac{1}{q}\right.$

$$
\begin{aligned}
\phi(n) & =p^{\alpha}\left(n^{\prime}\right) \Pi_{q \mid n^{\prime}}\left(1-\frac{1}{q}\right)-p^{\alpha-1} n^{\prime} \Pi_{q \mid n}\left(1-\frac{1}{q}\right) \text { At this point we know } p^{\alpha}\left(n^{\prime}\right)=n \text { so } \\
\phi(n) & =n\left(\Pi_{q \mid n^{\prime}}\left(1-\frac{1}{q}\right)-\frac{1}{p} \Pi_{q \mid n^{\prime}}\left(1-\frac{1}{q}\right)\right) \\
& =n\left(\Pi_{q \mid n^{\prime}}\left(1-\frac{1}{q}\right)-\Pi_{q \mid n^{\prime}}\left(1-\frac{1}{q}\right)\right) \\
& =n \Pi_{q \mid n}\left(1-\frac{1}{p}\right)
\end{aligned}
$$

2. Want to show $\phi(n)=\sum_{d \mid n} \mu(d) \frac{n}{d}$

We know $\phi\left(n^{\prime}\right)=\sum_{d \mid n^{\prime}} \mu(d) \frac{n^{\prime}}{d}$

$$
\begin{aligned}
\phi(n) & =p^{\alpha} \phi\left(n^{\prime}\right)-p^{\alpha-1} \phi\left(n^{\prime}\right) \\
& =p^{\alpha} \sum_{d \mid n^{\prime}} \mu(d) \frac{n^{\prime}}{d}-p^{\alpha-1} \sum_{d \mid n^{\prime}} \mu(d) \frac{p^{\alpha}\left(n^{\prime}\right)}{d} \\
& =\sum_{d \mid n^{\prime}} \mu(d) \frac{p^{\alpha}\left(n^{\prime}\right)}{d}-\frac{1}{p} \sum_{d \mid n^{\prime}} \mu(d) \frac{p^{\alpha}\left(n^{\prime}\right)}{d} \\
& =\sum_{d \mid n^{\prime}} \mu(d) \frac{n}{d}-\frac{1}{p} \sum_{d \mid n^{\prime}} \mu(d) \frac{n}{d} \\
& =\sum_{d \mid n^{\prime}} \mu(d) \frac{n}{d}+\sum_{d \mid n^{\prime}} \mu(p d) \frac{n}{p d} \\
& =\sum_{d \mid n, p \nmid d} \mu(d) \frac{n}{d}+\sum_{p d \mid n, p \nmid d} \mu(p d) \frac{n}{p d}
\end{aligned}
$$

Then the following expression evaluates to zero because of the definition of the Mobius function. Each sum over a value of d where d is some divisor of n^{\prime}.
$\sum_{p^{2} \mid n, p \nmid d} \mu\left(p^{2} d\right) \frac{n}{p^{2} d}+\sum_{p^{3} \mid n, p \nmid d} \mu\left(p^{3} d\right) \frac{n}{p^{3} d}+\ldots+\sum_{p^{\alpha} \mid n, p \nmid d} \mu\left(p^{\alpha} d\right) \frac{n}{p^{\alpha} d}$
Then every divisor e of n looks like $e=p^{i} d$ where $p \nmid d$
$\phi(n)=\sum_{e \mid n} \mu(e) \frac{n}{e}$ which is what we wanted to prove.

2.2 Corollary

If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ then $\phi(n)=\phi\left(p_{1}^{\alpha_{1}}\right) \phi\left(p_{2}^{\alpha_{2}}\right) \ldots \phi\left(p_{k}^{\alpha_{k}}\right)$
Proof:

$$
\begin{aligned}
\phi(n) & =n \Pi_{p \mid n}\left(1-\frac{1}{p}\right. \\
& =p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{k}}\right) \\
& =p_{1}^{\alpha_{1}}\left(1-\frac{1}{p_{1}}\right) p_{2}^{\alpha_{2}}\left(1-\frac{1}{p_{2}}\right) \ldots p_{k}^{\alpha_{k}}\left(1-\frac{1}{p_{k}}\right) \\
& =\phi\left(p_{1}^{\alpha_{1}}\right) \phi\left(p_{2}^{\alpha_{2}}\right) \ldots \phi\left(p_{k}^{\alpha_{k}}\right)
\end{aligned}
$$

by definition of ϕ for prime numbers $\phi\left(p^{\alpha}\right)=p^{\alpha}\left(1-\frac{1}{p}\right)$

2.3 Theorem

If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ then $d(n)=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \ldots\left(\alpha_{k}+1=d\left(p_{1}^{\alpha_{1}}\right) d\left(p_{2}^{\alpha_{2}}\right) \ldots d\left(p_{k}^{\alpha_{k}}\right)\right.$

Proof: if $n=p^{\alpha}$, then $d\left(p^{\alpha}\right)=\#\left\{p^{i} \mid p^{\alpha}\right\}=\alpha+1$
Now suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$
Any divisor $d \mid n$ where $d=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{k}^{\beta_{k}}$
For each i, the possible values of β_{i} are $0 \leq \beta_{i} \leq \alpha_{i}$
So there are $\left(\alpha_{i}+1\right)$ possibilities for the value of β_{i}
The total number of divisors of $n, d(n)=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \ldots\left(\alpha_{k}+1=d\left(p_{1}^{\alpha_{1}}\right) d\left(p_{2}^{\alpha_{2}}\right) \ldots d\left(p_{k}^{\alpha_{k}}\right)\right.$

2.4 Definition

We say that $f(n)$ is multiplicative if $f(n m)=f(n) f(m)$ whenever $g c d(n, m)=1$
Example:
Both $\phi(n)$ and $d(n)$ are multiplicative.

2.5 Theorem

$\sigma(n)=\sum_{d \mid n} d$ is multiplicative.
So $\sigma\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}\right)=\sigma\left(p_{1}^{\alpha_{1}}\right) \sigma\left(p_{2}^{\alpha_{2}}\right) \ldots \sigma\left(p_{k}^{\alpha_{k}}\right)=\left(\frac{p^{\alpha+1}-1}{p_{1}-1}\right) \cdot \ldots \cdot\left(\frac{p_{k}^{\alpha_{k}+1}-1}{p_{k}-1}\right)$
So $\sigma\left(p^{\alpha}\right)=\left(\frac{p^{\alpha+1}-1}{p-1}\right)$
Proof:
Prime powers:
$\sigma\left(p^{\alpha}\right)=\sum_{i=0}^{\alpha} p^{i}=\frac{1-p^{\alpha+1}}{1-p}=\frac{p^{\alpha+1}-1}{p-1}$
Now write $n=l k$ where $\operatorname{gcd}(l, k)=1$
If $d \mid n$, we can write $d=e f$ where $e \mid l$ and $f \mid k$

$$
\begin{aligned}
\sigma(n) & =\sum_{d \mid n} d \\
& =\sum_{e f|d, e| l, f \mid k} e f \\
& =\left(\sum_{e \mid l} e\right)\left(\sum f \mid k f\right) \\
& =\sigma(l) \sigma(k)
\end{aligned}
$$

Therefore σ is a multiplicative function.
Example:
$\sigma(12)=1+2+3+4+6+12=28$
$\sigma(3) \sigma(4)=(1+3)(1+2+4)=(4)(7)=28$
$\sigma(12)=\sigma(3) \sigma(4)$
The function $s(n)$ is not multiplicative.
$s(12)=1+2+3+4+6=16$
$s(3) s(4)=(1)(1+2)=3$
$16 \neq 3$

