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1 September 30

1.1 Combinatorial study of φ(n)

φ(p) = p− 1 if p is prime.

φ(p2) = p(p− 1) because we get p sets of p-1 numbers

φ(pα) = pα−1(p− 1)
Of the numbers up to pα, p of them are divisible by p, which is pα−1 numbers.
Subtracting these from the total number of numbers, 0topα − 1 = pα.
Thus φ(pα) = pα − pα−1 = pα−1(p− 1)

1.2 Observation

n∑
k=1

φ(pk) = φ(1) +

n∑
k=1

φ(pk)

= φ(1) +

n∑
k=1

pk−1(p− 1)

= φ(1) + (p− 1)

n∑
k=1

pk−1

= φ(1) + (p− 1)

n−1∑
k=0

pk

= φ(1) + (p− 1)
1− pn

1− p
= φ(1)− (1− pn)

= φ(1)− 1 + pn

= pn

Because this is a power of p, we can rewrite this as∑
d|pn φ(d) = pn
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1.3 Theorem

For any positive integer n,
∑
d|pn φ(d) = n

• Example: n = 20
d|20, d = {1, 2, 4, 5, 10, 20}

∑
d|20

φ(d) = φ(1) + φ(2) + φ(4) + φ(5) + φ(10) + φ(20)

= 1 + 1 + 2 + 4 + 4 + 8

= 20

Proof: Let Td = {1 ≤ i ≤ n|gcd(i, n) = d}
Example:
n = 20, d = 5

T5 = {5, 15}, |T5| = 2

Because every integer from 1 to n occurs in exactly one set,∑
d|n |Td| = n

Continuing the example of n = 20,

i gcd(i, n)

1 1
2 2
3 1
4 4
5 5
6 2
7 1
8 4
9 1
10 10
11 1
12 4
13 1
14 2
15 5
16 4
17 1
18 2
19 1
20 20
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This helps us to create the following sets.

T1 = {1, 3, 7, 9, 11, 13, 17, 19}
T2 = {2, 6, 14, 18}
T4 = {4, 8, 12, 16}
T5 = {5, 15}
T10 = {10}
T20 = {20}

The sizes of these sets correspond the various φ(d) values below.

|T1| = φ(20) = 8

|T2| = φ(10) = 4

|T4| = φ(5) = 4

|T5| = φ(4) = 2

|T10| = φ(2) = 1

|T20| = φ(1) = 1

Then the total number of numbers, 1-20 can be calculated from the sizes of
these sets. That is, |T1|+ |T2|+ |T4|+ |T −5 |+ |T10|+ |T20| = 20

So what is |Td|?

Td = {ad|1 ≤ a ≤ n

d
, gcd(a,

n

d
= 1)}

|Td| = |{ad|1 ≤ a ≤
n

d
, gcd(a,

n

d
= 1)}|

= φ(
n

d
)

Thus,

n =
∑
d|n

|Td|

=
∑
d|n

φ(
n

d
) =

∑
e|n

φ(e)wheree =
n

d
soed = n

n =
∑
e|n φ(e) is what we wanted to prove.
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1.4 Mobius Function

The Mobius function, µ(n) is another example of an arithmetic function. The
function is defined as follows

0 if p2|n for any prime p

1 if n is divisible by an even number of primes

−1 if n is divisible by an odd number of primes

Another function, ω(n) = the number of prime factors of n can be used to de-
fine the Mobius function in a slightly different way.{

0 if p2|n
(−1)ω(n) otherwise

Examples:

• µ(20) = 0

• µ(30) = (−1)3 = −1

• µ(1) = 0

• µ(p) = −1 where p is prime

1.5 Theorem

φ(n) =
∑
d|n µ(d)(nd ) =

∑
d|n µ(nd )(d) = n(Πp|n(1− 1

p )) where p is prime.

Example: φ(20) = 8
d|20 = {1, 2, 4, 5, 10, 20}

d µ(d) n
d

1 1 20
2 -1 10
4 0 5
5 -1 4
10 1 2
20 0 1

∑
d|n

µ(
n

d
)(d) =

∑
d|20

µ(
20

d

= 1(20)− 1(10) + 0(5)− 1(4) + 1(2) + 0(1)

= 20− 10− 4 + 2

= 8
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Using the other formula:

n(Πp|n(1− 1

p
)) = 20(1− 1

2
)(1− 1

5
)

= 20(
1

2
)(

4

5
)

= 20(
4

10

=
80

10
= 8

2 October 2

2.1 Theorem

φ(n) =
∑
d|n µ(d)(nd = nΠp|d(1− 1

p ) Proof: Induction on the number of distinc-

tive prime factors of n, ω(n)
Base Case: n = 1 holds vacuously because n = pα has 1 prime factor.

We already know φ(pα) = pα − pα−1 = pα(1− 1
p )

Check that these formulas hold:∑
d|pα

µ(d)
pα

d
=

α∑
i=0

µ(pi)
pα

pi

= µ(p0)
pα

p0
+ µ(p1)

pα

p1

= pα − pα−1

= pα(1− 1

p
)

Thus this formula works. Now for the product formula:

pαΠ(1− 1

p
= pα(1− 1

p
)

Both formulas work when n has one prime factor.

Induction Step: Now suppose both formulae hold when n has k prime fac-
tors.

Suppose n has k + 1 prime factors, and suppose p is a prime factor.

n = pα · n′ where p - n′

ω(n) = k + 1, ω(n′) = k. n′ has one fewer prime factors than n. Thus our
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formulae hold for n′.

Count integers up to n, coprime to n. This is what φ(n) is.

Take the n integers up to n, and divide them into pα chunks of n′ consecu-
tive integers. This creates pα subintervals.

Within each subinterval, there are φ(n′) many integers coprime to n′.

In total we have pα(φ(n)) many integers that are coprime to n′ between 1 and n.

But we need to remove the multiples of p to get the number of integers co-
prime to n instead of n′.

1
p of these numbers are divisible by p.

Thus, pα( 1
p ) = pα−1

pα−1 · φ(n′) of these numbers are divisible by p.

Then φ(n) = pαφ(n′)− pα−1φ(n′).

We want to show that this is equal to our formulae.

1. Since φ(n′) = n′Πq|n′(1− 1
q

φ(n) = pα(n′)Πq|n′(1− 1

q
)− pα−1n′Πq|n(1− 1

q
) At this point we know pα(n′) = n so

φ(n) = n(Πq|n′(1− 1

q
)− 1

p
Πq|n′(1− 1

q
))

= n(Πq|n′(1− 1

q
)−Πq|n′(1− 1

q
))

= nΠq|n(1− 1

p
)

2. Want to show φ(n) =
∑
d|n µ(d)nd
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We know φ(n′) =
∑
d|n′ µ(d)n

′

d

φ(n) = pαφ(n′)− pα−1φ(n′)

= pα
∑
d|n′

µ(d)
n′

d
− pα−1

∑
d|n′

µ(d)
pα(n′)

d

=
∑
d|n′

µ(d)
pα(n′)

d
− 1

p

∑
d|n′

µ(d)
pα(n′)

d

=
∑
d|n′

µ(d)
n

d
− 1

p

∑
d|n′

µ(d)
n

d

=
∑
d|n′

µ(d)
n

d
+

∑
d|n′

µ(pd)
n

pd

=
∑
d|n,p-d

µ(d)
n

d
+

∑
pd|n,p-d

µ(pd)
n

pd

Then the following expression evaluates to zero because of the definition of the
Mobius function. Each sum over a value of d where d is some divisor of n′.∑
p2|n,p-d µ(p2d) n

p2d +
∑
p3|n,p-d µ(p3d) n

p3d + ...+
∑
pα|n,p-d µ(pαd) n

pαd

Then every divisor e of n looks like e = pid where p - d

φ(n) =
∑
e|n µ(e)ne which is what we wanted to prove.

2.2 Corollary

If n = pα1
1 pα2

2 ...pαkk then φ(n) = φ(pα1
1 )φ(pα2

2 )...φ(pαkk )

Proof:

φ(n) = nΠp|n(1− 1

p

= pα1
1 pα2

2 ...pαkk (1− 1

p1
)(1− 1

p2
)...(1− 1

pk
)

= pα1
1 (1− 1

p1
)pα2

2 (1− 1

p2
)...pαkk (1− 1

pk
)

= φ(pα1
1 )φ(pα2

2 )...φ(pαkk )

by definition of φ for prime numbers φ(pα) = pα(1− 1
p )

2.3 Theorem

If n = pα1
1 pα2

2 ...pαkk then d(n) = (α1+1)(α2+1)...(αk+1 = d(pα1
1 )d(pα2

2 )...d(pαkk )
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Proof: if n = pα, then d(pα) = #{pi|pα} = α+ 1

Now suppose n = pα1
1 pα2

2 ...pαkk

Any divisor d|n where d = pβ1

1 p
β2

2 ...p
βk
k

For each i, the possible values of βi are 0 ≤ βi ≤ αi

So there are (αi + 1) possibilities for the value of βi

The total number of divisors of n, d(n) = (α1+1)(α2+1)...(αk+1 = d(pα1
1 )d(pα2

2 )...d(pαkk )

2.4 Definition

We say that f(n) is multiplicative if f(nm) = f(n)f(m) whenever gcd(n,m) = 1

Example:
Both φ(n) and d(n) are multiplicative.

2.5 Theorem

σ(n) =
∑
d|n d is multiplicative.

So σ(pα1
1 pα2

2 ...pαkk ) = σ(pα1
1 )σ(pα2

2 )...σ(pαkk ) = (p
α+1−1
p1−1 ) · ... · (p

αk+1

k −1
pk−1 )

So σ(pα) = (p
α+1−1
p−1 )

Proof:
Prime powers:

σ(pα) =
∑α
i=0 p

i = 1−pα+1

1−p = pα+1−1
p−1

Now write n = lk where gcd(l, k) = 1

If d|n, we can write d = ef where e|l and f |k

σ(n) =
∑
d|n

d

=
∑

ef |d,e|l,f |k

ef

= (
∑
e|l

e)(
∑

f |kf)

= σ(l)σ(k)
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Therefore σ is a multiplicative function.

Example:
σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28
σ(3)σ(4) = (1 + 3)(1 + 2 + 4) = (4)(7) = 28
σ(12) = σ(3)σ(4)

The function s(n) is not multiplicative.

s(12) = 1 + 2 + 3 + 4 + 6 = 16
s(3)s(4) = (1)(1 + 2) = 3
16 6= 3
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