MATH 565 Spring 2019 - Class Notes

3/13/19

Scribe: Michelle Tarr

Summary: This class covered how to solve linear equations modulo n using inverses and how to solve systems of concurrences with the Chinese Remainder Theorem.

Solving Linear Equations Modulo n

Consider $a x \equiv b(\bmod n)$

- How can we find a solution to this equation without trying every possible value of x ?
- If $a x \equiv b(\bmod n)$, then $n \mid(b-a x)$ for some integer k, so $b-a x=n k$.
- We are looking for values of k and x that satisfy the equation $b=n k+a x$.
- Through previous investigation with the Euclidean Algorithm, we know that equations of the form $b=n k+a x$ have a solution if and only if $\operatorname{gcd}(a, n) \mid b$.

Theorem 1. The equation $a x \equiv b(\bmod n)$ has a solution if and only if $\operatorname{gcd}(a, n) \mid b$. The solution to the equation is unique if and only if $\operatorname{gcd}(a, n)=1$

Example 1: Solve $3 x \equiv 5(\bmod 6)$
Note that gcd $(3,6)=3$ and $3 \nmid 5$. Thus this equation has no solution.
Example 2: Solve $3 x \equiv 12(\bmod 6)$
Note that $\operatorname{gcd}(3,6)=3$ and $3 \mid 12$. Thus this equation has solutions, but they are not unique since $\operatorname{gcd}(3,6) \neq 1$.

$$
\begin{aligned}
& x \equiv 2(\bmod 6) \text { since } 3(2) \equiv 6 \equiv 12(\bmod 6) \\
& x \equiv 4(\bmod 6) \text { since } 3(4) \equiv 12(\bmod 6) \\
& x \equiv 6(\bmod 6) \text { since } 3(6) \equiv 18 \equiv 12(\bmod 6)
\end{aligned}
$$

Example 3: Solve $5 x \equiv 2(\bmod 6)$
Note that $\operatorname{gcd}(5,6)=1$. Thus this equation has a solution and it is unique.

x	$5 x(\bmod 6)$
0	$0(\bmod 6)$
1	$5(\bmod 6)$
2	$10 \equiv 4(\bmod 6)$
3	$15 \equiv 3(\bmod 6)$
4	$20 \equiv 2(\bmod 6)$
5	$25 \equiv 1(\bmod 6)$

Thus $x \equiv 4(\bmod 6)$ is the one unique solution.

Definition: If $a \cdot \bar{a} \equiv 1(\bmod n)$ we say that \bar{a} is the inverse of a modulo n.
Example 4: $3 \cdot 4 \equiv 12 \equiv 1(\bmod 11)$, so 4 is the inverse of 3 modulo 11 .

Theorem 2. If $\operatorname{gcd}(a, n)=1$, then a has a unique inverse modulo n.
Proof. To find the inverse of a we are trying to solve the equation $a x \equiv 1(\bmod n)$. By our previous theorem we know this equation has a solution if $\operatorname{gcd}(a, n) \mid 1$. Since $\operatorname{gcd}(a, n)=1$, the inverse exists and is unique.

Example 5: Find the inverse of $5(\bmod 21)$.
In order to find the inverse, we must solve the congruence $5 x \equiv 1(\bmod 21)$, which means finding x and y such that $5 x+21 y=1$. This can be done using the Euclidean Algorithm:

$$
\begin{gathered}
21=4(5)+1 \\
5=5(1)+0 \\
1=1(21)-4(5)
\end{gathered}
$$

Thus, $x \equiv-4 \equiv 17(\bmod 21)$ is the inverse of 5 modulo 21 .

How to Solve A Linear Congruence:

Consider $a x \equiv b(\bmod n)$

- We can not divide by a in modular arithmetic so how can we cancel out a in order to find a solution for x ?
- We can use inverses and multiply both sides of the congruence by the inverse of a, \bar{a}.

Example 6: Solve $5 x \equiv 12(\bmod 21)$.
We know that the inverse of 5 modulo 21 is 17 , so to solve for x we must multiply by 17 on both sides.

$$
\begin{aligned}
5 x & \equiv 12(\bmod 21) \\
17(5 x) & \equiv 17(12)(\bmod 21) \\
1 x \equiv 204 & \equiv-6 \equiv 15(\bmod 21) \\
x & \equiv 15(\bmod 21)
\end{aligned}
$$

Systems of Congruences

- If $a \equiv b(\bmod n)$, then $n \mid(b-a)$.
- Any factor of n also divides b -a as well
- We can write congruences in the modulo of each of these factors to create a system of congruences.

Example 7: Consider $x \equiv 11(\bmod 42)$, which means $42 \mid(11-x)$.
Since $42=2 \cdot 3 \cdot 7$, we know $2|(11-x), 3|(11-x)$, and $7 \mid(11-x)$.

$$
\begin{aligned}
& x \equiv 11 \equiv 1(\bmod 2) \\
& x \equiv 11 \equiv 2(\bmod 3) \\
& x \equiv 11 \equiv 4(\bmod 7)
\end{aligned}
$$

- Can we go the other way and find one solution that works for a system of congruences simultaneously?

Theorem 3: Chinese Remainder Theorem. If integers $m_{1}, m_{2}, \ldots m_{k}$ are all pairwise coprime, so that the gcd of any pair is 1, then any set of equations:

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right)
\end{aligned}
$$

has a unique solution modulo $M=m_{1} \cdot m_{2} \cdot \ldots m_{k}$
Proof. Suppose $m_{1}, m_{2}, \ldots m_{k}$ are pairwise coprime integers. Let $M=m_{1} \cdot m_{2} \cdot \ldots m_{k}$ be their product. Let $n_{i}=\frac{M}{m_{i}}$ be the product of all the values except m_{i}. Note that $\operatorname{gcd}\left(n_{i}, m_{i}\right)=1$ since n_{i} is the product of numbers that are all coprime with m_{i}. Thus, each n_{i} has an inverse $\bar{n}_{i}\left(\bmod m_{i}\right)$. Compute $x=a_{1} n_{1} \bar{n}_{1}+a_{2} n_{2} \bar{n}_{2}+\ldots a_{k} n_{k} \bar{n}_{k}$.

Consider $x \equiv a_{1} n_{1} \bar{n}_{1}+a_{2} n_{2} \bar{n}_{2}+\ldots a_{k} n_{k} \bar{n}_{k}\left(\bmod m_{j}\right)$. Since $m_{j} \mid n_{i}$ for all $i \neq j$, we know that $a_{i} n_{i} \bar{n}_{i} \equiv 0\left(\bmod m_{j}\right)$ for all $i \neq j$. This means $x \equiv a_{j} n_{j} \bar{n}_{j}\left(\bmod m_{j}\right)$. In addition, $n_{j} \bar{n}_{j} \equiv 1\left(\bmod m_{j}\right)$ because \bar{n}_{j} is the inverse of n_{j} modulo j . Thus $x \equiv a_{j}\left(\bmod m_{j}\right)$.

Therefore, x satisfies all the individual congruences $x \equiv a_{i}\left(\bmod m_{i}\right)$ simultaneously.
Example 8: Chinese Remainder Theorem: Find x such that

$$
\begin{aligned}
& x \equiv 0(\bmod 2) \\
& x \equiv 1(\bmod 3) \\
& x \equiv 6(\bmod 7)
\end{aligned}
$$

Note that 2, 3, and 7 are all pairwise coprime and that $M=2 \cdot 3 \cdot 7=42$.

$$
\begin{array}{lll}
a_{1}=0 & a_{2}=1 & a_{3}=6 \\
m_{1}=2 & m_{2}=3 & m_{3}=7 \\
n_{1}=3 \cdot 7=21 & n_{2}=2 \cdot 7=14 & n_{3}=2 \cdot 3=6 \\
\bar{n}_{1} \equiv 21^{-1}(\bmod 2) & \bar{n}_{2} \equiv 14^{-1}(\bmod 3) & \bar{n}_{3} \equiv 6^{-1}(\bmod 7) \\
\bar{n}_{1}=1 & \bar{n}_{2}=2 & \bar{n}_{3}=6
\end{array}
$$

Use the Chiniese Remainer Theorem to compute $x=a_{1} n_{1} \bar{n}_{1}+a_{2} n_{2} \bar{n}_{2}+a_{3} n_{3} \bar{n}_{3}$. This gives $x=(0)(21)(1)+(1)(14)(2)+(6)(6)(6)=244$. The solution to the system of congruences is $x \equiv 244 \equiv 34(\bmod 42)$.

Polynomial Equations Modulo n

Theorem 4: Legendre. If $f(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots a_{0}$ is a polynomial of degree $d>0$ where $p \nmid a_{d}$, then $f(x) \equiv 0(\bmod p)$ has at most d solutions.

