Number Theory Notes

Ernesto Diaz

September 16, 182019

DATE September 16, 2019
Consider our binomial Coefficient $\binom{n}{k}$ if $0 \leq k \leq \mathrm{n}$ we define

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

for $\mathrm{k}>\mathrm{n}$ we define $\binom{n}{k}=0$.
Fix a value of n, let $a_{k}=\binom{n}{k}$
Example $\mathrm{n}=3, a_{0}=\binom{3}{0}=1, a_{1}=\binom{3}{0}=3, a_{2}=\binom{3}{0}=3, a_{3}=\binom{3}{0}=1$, $a_{4}=0=a_{5}, a_{6}, \ldots$
Can we find a generating function for this sequence?
$\mathrm{f}(\mathrm{x})=\sum_{i=1}^{\infty}\binom{n}{k} x^{i}$
Binomial Theorem: $(x+y)^{n}=\sum_{i=1}^{\infty}\binom{n}{i} x^{i} y^{n-i}$
set $\mathrm{y}=1$ in this expression to get
$(x+1)^{n}=\sum_{i=1}^{\infty}\binom{n}{i} x^{i}$
Generalized Binomial coefficient if $c \in \mathbb{R}$ and $\mathrm{k} \geq 0$ is an integer we can define $\binom{c}{k}=\frac{c(c-1) \ldots(c-k)}{k!}$
Note: that if c is a positive integer then this definition agrees with the old definition.
Using this definition we get generalized binomial theorem for $\mathrm{c} \in \mathbb{R}$
$\left.(x+1)^{n}=\sum_{i=1}^{\infty}\binom{c}{i} x^{i}\right\}$ Infinite if $c \notin \mathbb{N}$
Can we find a generating function for this sequence?
$\mathrm{f}(\mathrm{x})=\sum_{i=1}^{\infty}\binom{n}{k} x^{i}$
Suppose we have a sum of n terms $x_{1}+x_{2}+\cdots+x_{n}$ we care about order in which we do the addition.
we want to insert parenthesis to make it unambiguous the order in which the additions are preformed
Example: $\mathrm{n}=4$
$x_{1}+x_{2}+x_{3}+x_{4}$
$\left(\left(x_{1}+x_{2}\right)+x_{3}\right)+x_{4}$
$x_{1}+\left(x_{2}+\left(x_{3}+x_{4}\right)\right)$
$\left(x_{1}+\left(x_{2}+x_{3}\right)\right)+x_{4}$
$\left(x_{1}+x_{2}\right)+\left(x_{3}+x_{4}\right)$
These are all the ways (5 ways to do it)
What if we had n terms?
Let c_{n} count the number of ways to do addition of n terms
$\mathrm{c}_{1}=1, \mathrm{c}_{2}=1, \mathrm{c}_{3}=2, \mathrm{c}_{4}=5, \ldots$
if we have n terms, there has to be 1 addition that happens last. Pick which
addition happens last
there are Size: $\mathrm{k}+(\mathrm{n}-\mathrm{k})$
$c_{n}=\sum_{i=1}^{n-1} c_{i} c_{n-i}$
$c_{n-i} i^{-}$ways to sum the last ($\mathrm{n}-\mathrm{i}$) terms
$c_{i j} i^{-}$ways to sum the first i terms
Use generating functions:
Define $\mathrm{c}(\mathrm{x})=\sum_{i=0}^{\infty} c_{i} x^{i}$
lest square this!
$c(x)^{2}=\left(\sum_{i=0}^{\infty} c_{i} x^{i}\right)^{2}=$
$c(x)^{2}=\sum_{j=0}^{\infty}\left(\sum_{i=0}^{\infty} c_{i} c_{j-1}\right) x^{j}$
$\sum_{i=0}^{\infty} c_{i} c_{j-1} \mathrm{i}$ - foil out squares
Counting the ways to insert parenthesis to make $a_{1}+a_{2}+\cdots+a_{n}$ unambiguous (if order of doing addition mattered) count this by c_{n} some operation occurs last
$\left(a_{1}+\cdots+a_{i}\right)+\left(a_{i+1}+\cdots+a_{n}\right)$
$c_{i}=a_{1}+\cdots+a_{i}$
$c_{n-i}=a_{i+1}+\cdots+a_{n}$
Use generating Functions
$c(x)=\sum_{i=1}^{n-1} c_{i} c_{n-i}$
$c(x)^{2}=\left(\sum_{i=0}^{\infty} c_{i} x^{i}\right)^{2}=$
$c(x)^{2}=\sum_{j=0}^{\infty}\left(\sum_{i=0}^{\infty} c_{i} c_{j-1}\right) x^{j}$

$$
\begin{aligned}
& c(x)(x(c(x)))=\left(c_{0}+c_{1} x+c_{2} x^{2}+\ldots\right)\left(c_{0}+c_{1} x+c_{2} x^{2}+\ldots\right) \\
& =0 x^{0}+c_{0}^{2} x+\left(c_{0} c_{1}+c_{1} c_{0}\right) x^{2}+\left(c_{0} c_{2}+c_{1} c_{1}+c_{2} c_{0}\right) x^{3}+\ldots \\
& c(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{j} x^{j} \text { sum operation occurs } \\
& c_{0}=1 \\
& c_{j} x=\left(\sum_{i=0}^{j-1} c_{j} c_{j-i-1}\right) x^{i} \\
& c(x)=1+x c(x)^{2} \\
& c_{n}=\sum_{i=0}^{n-1} c_{i} c_{n-i-1} \text { Valid for } n \geq 1 \\
& c(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots \\
& 1+x c(x)^{2}=1+x *\left(\left(c_{0} c_{0}\right)+\left(c_{1} c_{0}+c_{0} c_{1}\right) x+\ldots\right) \text { Remember } c_{0}=1 \\
& c(x)=1+x c(x)^{2} \\
& 0=1-c(x)+x(c(x))^{2} \text { let } \mathrm{y}=\mathrm{c}(\mathrm{x}) \\
& 0=1-(1) y+x y^{2} \text { By Quadratic Formula } \\
& \mathrm{y}=\frac{1 \pm \sqrt{1-4 x}}{2 x} \\
& c(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x} \text { We don't want an } x^{-1} \text { term in the generating function } \\
& =\text { if we choose " } \mathrm{t} \text { " we would get a }(1 / \mathrm{x}) \text { term, therefore } \\
& c(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x}=\sum_{n=0}^{\infty} c_{n} x^{n} \\
& =\frac{1}{2 x}(1-4 x)^{1 / 2} \mathrm{Us} \text { generalized binomial theorem! } \\
& =\frac{1}{2 x}\left(1-\sum_{i=1}^{\infty}(-4 x)^{i}\binom{1 / 2}{i}\right) \\
& =\frac{-1}{2}(-1)^{n+1}(4)^{n+1}\left(\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \ldots\left(\frac{1}{2}-n\right)}{(n+1)!}\right) \\
& =\frac{1}{2}(-1)^{n}(4)^{n+1}\left(\frac{\frac{1}{2}\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right) \ldots\left(\frac{1-2 n}{2}\right)}{(n+1)!}\right) \\
& =\frac{1}{2}(4)^{n+1}\left(\left(\frac{\left(\frac{1}{2}\right)\left(\frac{3}{2}\right) \ldots\left(\frac{2 n-1}{2}\right)}{(n+1)!}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =(4)^{n}\left(\frac{\left(\frac{1}{2}\right)^{n}(1)(3) \ldots(2 n-1)}{(n+1)!}\right) \\
& =(4)^{n}\left(\frac{\left(\frac{1}{2}\right)^{n}(1)(3) \ldots(2 n-1)}{(n+1)!}\right)\left(\frac{(n!)(1 / 2)^{n}\left(2^{n}\right)}{n!}\right) \\
& =\frac{4^{n}(1 / 2)^{n}(1 / 2)^{n}(2 n!)}{(n+1)!(n!)} \\
& =\frac{2 n!}{(n+1)!n!} \\
& =\frac{1}{n+1} \frac{2 n!}{n!n!} \\
& =\frac{1}{n+1}\binom{2 n}{n} \\
c_{n} & =\frac{1}{n+1}\binom{2 n}{n}<- \text { This is the Catalan Numbers }
\end{aligned}
$$

Corollary: $\binom{2 n}{n}$ is divisible by ($\mathrm{n}+1$)
Modular arithmetic:
Definition: $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{c})$ " a is congruent to b modulo c " if $\mathrm{c} \mid(\mathrm{a}-\mathrm{b})$
Example: $12 \equiv 2(\bmod 5)$ because $5 \mid(12-2)$
Theorem: \equiv is an equivalence relation
Recall an equivalence relation ${ }^{\text {~satisfies } 3 \text { things: }}$

- Reflexive: a ~a
- Symmetric: a ~b, b ~a
- Transitive: if a ${ }^{\sim} \mathrm{b}, \mathrm{b}$ ~ c , then $\mathrm{a}{ }^{\sim} \mathrm{c}$

Proof. Reflexive and Symmetric properties are trivial to show.
Transitive: Suppose $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n}))$ and $\mathrm{b} \equiv \mathrm{c}(\bmod \mathrm{n})$)
This means $n \mid(a-b)$ and $n \mid(b-c)$
$(\mathrm{a}-\mathrm{b})+(\mathrm{b}-\mathrm{c})=(\mathrm{a}-\mathrm{c})$
since n divides the 1st two it divides the third as well so $\mathrm{a} \equiv \mathrm{c}(\bmod \mathrm{n})$
Theorem if $\mathrm{a} \equiv \mathrm{a}^{\prime}(\bmod \mathrm{n})$ and $\mathrm{b} \equiv \mathrm{b}^{\prime}(\bmod \mathrm{n})$ then $\mathrm{a} \pm \mathrm{b} \equiv \mathrm{a}^{\prime} \pm \mathrm{b}^{\prime}(\bmod$ n) and $a b \equiv a^{\prime} b^{\prime}(\bmod n)$

Proof. Addition/subtraction is trivial to show so we will proceed to prove multiplication. we know $n \mid\left(a-a^{\prime}\right)$ and $n \mid\left(b-b^{\prime}\right)$, we want to show that $n \mid\left(a b-a^{\prime}\right.$ b') write

$$
a b-a^{\prime} b^{\prime}=a b+\left(a b^{\prime}-a b^{\prime}\right)-a^{\prime} b^{\prime} \quad=a\left(b-b^{\prime}\right)+\left(a-a^{\prime}\right) b^{\prime}
$$

and we know that n divides ($\mathrm{b}-\mathrm{b}^{\prime}$) and ($\mathrm{a}-\mathrm{a}$ ')
So n|(ab-a' b')
DefinitionWe call equivalence class of numbers equivalent to $a(\bmod n)$ the residue class a $(\bmod n)$ or sometimes a residue.

DATE September 18, 2019
We start the class by proposing a question:
When can we "divide" modulo n?
We introduce a law of modulo
Cancellation Law: if $\mathrm{bc} \equiv \mathrm{bd}(\bmod \mathrm{n})$ and $\operatorname{gcd}(\mathrm{b}, \mathrm{n})=1$ then $\mathrm{c} \equiv \mathrm{d}$ $(\bmod n)$

Proof. : Suppose $\operatorname{gcd}(\mathrm{b}, \mathrm{n})=1$ and $\mathrm{bc} \equiv \mathrm{bd}(\bmod \mathrm{n})$ then $\mathrm{n}-(\mathrm{bc}-\mathrm{db})$ since $\operatorname{gcd}(\mathrm{b}, \mathrm{n})=1$ this tells us that $\mathrm{n}-(\mathrm{c}-\mathrm{d})$ so $\mathrm{c} \equiv \mathrm{d}(\bmod \mathrm{n})$

This is false in general when $\operatorname{gcd}(b, n) \neq 1$
Example: $3(4) \equiv 3(8)(\bmod 12)$ but $4 \not \equiv 8(\bmod 12)$.
Define: A complete reside System $(\bmod n)$ is a set $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$ of integers such that

1. $r_{i} \not \equiv r_{j}(\bmod \mathrm{n})$ if $\mathrm{i} \neq \mathrm{j}$
2. if m is any integer where exists an r_{j} with $\mathrm{m} \equiv r_{j}(\bmod \mathrm{n})$

Example: If $\mathrm{n}=3\{0,1,2\}$ forms a complete residue system $(\bmod 3),\{-1,0,1\}$ is also a complete residue system, so does $\{5,9,22\}$

Theorem: Any Complete Residue System $(\bmod n)\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$ has exactly n elements.

Proof. Take $t_{1}=0, t_{2}=1, \ldots, t_{n}=\mathrm{n}-1$.
The set $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ forms a complete residue system since:

1. If $\mathrm{i} \neq \mathrm{j}$ then $1+\mathrm{i}-\mathrm{t}$, where $1<\mathrm{n}$. so $t_{i} \neq t_{j}(\bmod \mathrm{n})$
2. If m is any integer we can do division with remainder $\mathrm{m}=\mathrm{q}^{*} \mathrm{n}+\mathrm{s}$, $0 \leq s<n$ so $\mathrm{m} \equiv \mathrm{s}(\bmod \mathrm{n})$ and $\mathrm{s} \in\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$

Note that $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ has size n . Now if $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ is also a complete residue system. Then each $r_{i} \equiv t_{j}$ for some j . we can't have $r_{j} \equiv t_{j}$ and $r_{l} \equiv t_{j}(\bmod \mathrm{n})$ if $\mathrm{i} \neq \mathrm{l}$ since the r_{j} are all distinct so $\mathrm{k} \leq \mathrm{n}$. likewise we can match an r_{j} to each t_{j} since the r's also form a complete system so $\mathrm{k} \geq \mathrm{n}$. So any complete residue system has size n.

Definition: Say that $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$ is a reduced residue system (mod n) if

1. $r_{i} \not \equiv r_{j}$ for any $\mathrm{i} \neq \mathrm{j}$
2. $\operatorname{gcd}\left(r_{i}, \mathrm{n}\right)=1$ for all i
3. if $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$ then there exists an i with $\mathrm{m} \equiv r_{i}(\bmod \mathrm{n})$

Example: $\mathrm{n}=12\{1,5,7,11\}$ or $\{13,17,19,23\}$ or $\{-5,-1,1,5\}$
Definition: for any positive integer n we define $\varphi(\mathrm{n})$ to be the count of numbers $i \in\{1,2, \ldots, n-1\}$ which have $\operatorname{gcd}(i, n)=1$
Example: $\varphi(12)=4$ Note
Observation: if n is prime the $\varphi(\mathrm{p})=\mathrm{p}-1$
Example: p=5 reduced residue system $\{1,2,3,4\}$
Theorem: Any reduced residue system (mod n) contains exactly φ elements
Proof. It is nearly identical to the one for complete residue systems.
Note: if we take any two elements of a reduced system and multiply them we get another integer which has gcd of 1 with n and thus is equivalent to a different reduced residue $(\bmod n)$.
The collection of reduced residue form a group under multiplication Denoted by $(\mathbb{Z} / n \mathbb{Z})^{x}$ - for a group
Euler's Theorem: if n is any positive integer and $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$ then $a^{\varphi(n)}$ $\equiv 1(\bmod n)$

Proof. Let $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$ be a reduced residue system $(\bmod n)$
Note: it has size $\varphi(\mathrm{n})$ multiply these residue together $\mathrm{R}=r_{1}, r_{2}, \ldots, r_{\varphi(n)}(\bmod$ n)

Now let $s_{i}=\operatorname{ar} r_{i}(\bmod \mathrm{n})$ Then the s_{i} are all distinct mod n since if $s_{i} \equiv s_{j}$ $(\bmod \mathrm{n})$ then $a * r_{i} \equiv a * r_{j}(\bmod \mathrm{n})$ by the cancellation property we have $r_{i} \equiv r_{j}(\bmod \mathrm{n})$. Therefore $\left\{s_{1}, s_{2}, \ldots, s_{\varphi}\right\}$ is also a reduced residue system. Multiply the s_{i} together to get
$s_{1}, s_{2}, \ldots, s_{\varphi(n)} \equiv r_{1}, r_{2}, \ldots, r_{\varphi(n)} \equiv \mathrm{R}(\bmod \mathrm{n})$ (possibly in a different order)
Also $s_{1}, s_{2}, \ldots, s_{\varphi(n)}=\left(a r_{1}\right),\left(a r_{2}\right), \ldots,\left(a r_{\varphi(n)}\right) \equiv a^{\varphi(n)} r_{1} r_{2} \ldots r_{\varphi(n} \equiv a^{\varphi(n)} \mathrm{R}$ $(\bmod n)$
so $\mathrm{R} \equiv a^{\varphi(n)} \mathrm{R}(\bmod \mathrm{n})$ Since $\operatorname{gcd}(\mathrm{R}, \mathrm{n})=1$ use the cancellation property to get $1 \equiv a^{\varphi(n)}(\bmod \mathrm{n})$

Corollary: (Fermat's Little Theorem) If P is a prime $\varphi(p)=\mathrm{p}-1$ so $a^{\varphi(p)} \equiv a^{p-1} \equiv 1(\bmod \mathrm{n})$ 。

