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DATE September 16, 2019
Consider our binomial Coefficient (Z) if 0< k <n we define

Example n=3, ap = (J) =

a4:():a5,a6,...

Can we find a generating function for this sequence?

f(x)=2"2 (3)' o

Binomial Theorem: (z +y)" = Y2, (")a'y"™"

set y=1 in this expression to get

(z+1)" =3, (7)o

Generalized Binomial coefficient if c€ R and k>0 is an integer we can define
c\ _ cle=1)...(c—k)

(1) = == =

Note: that if ¢ is a positive integer then this definition agrees with the old

definition.

Using this definition we get generalized binomial theorem for ¢ € R
(z+1)" =372, (¥} nfinite if c¢ N

Can we find a generating function for this sequence?

f)=22020 ()2’

Suppose we have a sum of n terms x, + x9 + - - - + x,, we care about order in
which we do the addition.

we want to insert parenthesis to make it unambiguous the order in which the
additions are preformed

Example: n=4

1+ 29+ T3+ x4

((xl + IQ) + xg) + x4

T+ (ZEQ + (1’3 + ZE4))

(w1 + (2 +23)) + 24

(ZBl + LEQ) + <£U3 + $4)

These are all the ways (5 ways to do it)

What if we had n terms?

Let ¢, count the number of ways to do addition of n terms

c1=1,co =1,c3=2,¢c4 =5,...

if we have n terms, there has to be 1 addition that happens last. Pick which
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addition happens last

there are Size: k + (n-k)

Cp = Z?:_ll CiCpn—i

Cn—ij- ways to sum the last (n-i) terms
¢ii- ways to sum the first i terms

Use generating functions:

Define ¢(x) = > 7, cia’

lest square this!

(o) = (S35, ca')? =

()2 = Yoo (S iy 1))

Yoo cicj—1 i- foil out squares
Counting the ways to insert parenthesis to make a; + as + - - - + a,, unam-
biguous (if order of doing addition mattered) count this by ¢,some operation
occurs last

(a1 + -4 a;) + (aip1 + -+ an)
c=a,+ -+a;

Cp—i = Qi1 + -+ ap

Use generating Functions

c(x) =317 cicn

(o) = (S ca')? =

@) = (3 cicyr)a?



c(z)(z(c(z))) = (co + c1z + cox® + ... )(co + 1 + caz® +...)
= 02° + ez + (coc1 + crco)r® + (coca + cre1 + caco)® + . .
c(x) =cy+ar+ cox® 4 -+ cjxj sum operation occurs

00:1

7—1
Cir = (Z CjCj,i,1)$Z
=0

c(r) =1+ zc(x)?

Cp = Z CiCp—i—1 Valid for n > 1
i=0
c(x) = co+c1x + e + ..
L+ azc(x)? =1+ 2 * ((coco) + (c1¢0 + coc1)x + ... )Remember ¢y = 1
o(r) =1+ zc(x)?
0=1—c(z)+ 2(c(z))let y =c(x)
0 =1— (1)y + 2y*By Quadratic Formula

1+V1-— 4z

y

2z
1++/1—-4
c(x) = Q—xWe don’t want an z~'term in the generating function
x

= if we choose "t” we would get a (1/x) term, therefore

1+VT—dr .,
c(x) =—F— :ch:v
n=0

= 2—(1 — 42)2Us generalized binomial theorem!
T

= 5= (M)

i=1




_ (4)n((§)n(1> i)+1)('2n - 1))
($)"(1)(3)...2n—1)_ (n))(1/2)"(2")

)

n!

(n+1)n!
1 2n!
n+ 1nln!

B 1 2n
T n+1\n
1

2
Cp = ( n) < —This is the Catalan Numbers
n+1\n

Corollary:(*") is divisible by (n+1)
Modular arithmetic:

Definition: a= b(mod ¢) "a is congruent to b modulo ¢” if c|(a-b)
Example: 12 = 2(mod 5) because 5|(12-2)

Theorem:= is an equivalence relation

Recall an equivalence relation “satisfies 3 things:
e Reflexive: a "a
e Symmetric: a b, b "a
e Transitive: if a "b, b "¢, then a "¢

Proof. Reflexive and Symmetric properties are trivial to show.
Transitive: Suppose a = b(mod n)) and b = ¢(mod n))

This means n|(a-b) and n|(b-c)

(a-b)+(b-c)=(a-c)

since n divides the 1st two it divides the third as well so a=c(mod n) O

Theorem if a = a’ (mod n) and b = b’ (mod n) then a £ b = a’+ b’ (mod
n) and ab = a’b’ (mod n)



Proof. Addition/subtraction is trivial to show so we will proceed to prove
multiplication. we know n|(a-a’) and n|(b-b’), we want to show that n|(ab-a’
b’) write

ab—ad't =ab+ (ab — al) — a't/ =ab—0)+ (a—d )V

and we know that n divides (b-b’) and (a-a’)
So n|(ab-a’ b’) O

DefinitionWe call equivalence class of numbers equivalent to a(mod n)
the residue class a(mod n) or sometimes a residue.



DATE September 18, 2019
We start the class by proposing a question:
When can we ”divide” modulo n?
We introduce a law of modulo

Cancellation Law: if bc = bd (mod n) and ged(b,n) = 1 then ¢ = d
(mod n)

Proof. : Suppose ged(bn)=1 and be = bd (mod n) then n—(bc-db) since
ged(b,n)=1 this tells us that n—(c-d) so ¢ = d (mod n) O

This is false in general when ged(b,n) # 1
Example: 3(4) = 3(8) (mod 12) but 4 # 8 (mod 12).

Define: A complete reside System (mod n) is a set {ry,re,..., 7} of in-
tegers such that

1. 7, #r; (mod n) if i # ]
2. if m is any integer where exists an r; with m = r; (mod n)

Example: If n=3 {0,1,2} forms a complete residue system (mod 3), {-1,0,1}
is also a complete residue system, so does {5,9,22}

Theorem: Any Complete Residue System (mod n) {ry,ro,..., 7} has
exactly n elements.

Proof. Taket; =0,t, =1,...,t, =n- 1.
The set {t1,ts,...,t,} forms a complete residue system since:

1. If i # j then 14i-t, where 1<n. so ¢; # t; (mod n)

2. If m is any integer we can do division with remainder m = q*n + s,
0<s<mnsom=s(modn)ands € {t,ts,...,t,}

Note that {t1,ts,...,t,} has size n. Now if {ry,r9,...,7,} is also a complete
residue system. Then each r; = t; for some j. we can’'t have r; = t; and
r; =t; (mod n) if i # | since the r; are all distinct so k < n. likewise we can
match an r; to each ¢; since the r’s also form a complete system so k > n.

So any complete residue system has size n. ]
Definition: Say that {ry,rs,..., 7} is a reduced residue system (mod
n) if



1. r; #r; for any i # ]
2. ged(r;,n)=1 for all i
3. if ged(m,n)=1 then there exists an i with m = r; (mod n)

Example: n=12 {1,5,7,11} or {13,17,19,23} or {-5,-1,1,5}

Definition: for any positive integer n we define ¢(n) to be the count of
numbers i € {1,2,...,n — 1} which have ged(i,n)=1

Example: ¢(12)=4 Note

Observation: if n is prime the ¢(p) = p-1

Example: p=5 reduced residue system {1,2,3,4}

Theorem: Any reduced residue system (mod n) contains exactly ¢ elements

Proof. 1t is nearly identical to the one for complete residue systems. O]

Note: if we take any two elements of a reduced system and multiply
them we get another integer which has ged of 1 with n and thus is equivalent
to a different reduced residue (mod n).

The collection of reduced residue form a group under multiplication
Denoted by (Z/nZ)* - for a group

Euler’s Theorem: if n is any positive integer and ged(a,n) = 1 then a®™
= 1 (mod n)

Proof. Let {ry,ro,...,7:} be a reduced residue system (mod n)

Note: it has size ¢(n) multiply these residue together R = rq, 7, ..., 7y (mod
1)

Now let s; = ar;(mod n) Then the s; are all distinct mod n since if 5; = s;
(mod n) then a*r; = a*r; (mod n) by the cancellation property we have

r; = r; (mod n). Therefore {si,ss,...,5,} is also a reduced residue system.
Multiply the s; together to get

51,52, Sp(n) = T1,72,- -, Tp(n) = R (mod n) (possibly in a different order)
Also 81, 82, ..., Spm) = (ar), (ara), ..., (arpp)) = a?™riry . rye = a?™R
(mod n)

so R= a*™ R(mod n) Since gcd(R,n)=1

use the cancellation property to get 1 = a*™ (mod n) ]

Corollary: (Fermat’s Little Theorem) If P is a prime ¢(p) =p-1
so a?®) = aP~! = 1(mod n).



