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DATE September 16, 2019
Consider our binomial Coefficient

(
n
k

)
if 0≤ k ≤n we define(

n

k

)
=

n!

k!(n− k)!

for k > n we define
(
n
k

)
=0.

Fix a value of n, let ak =
(
n
k

)
Example n=3, a0 =

(
3
0

)
= 1, a1 =

(
3
0

)
= 3, a2 =

(
3
0

)
= 3, a3 =

(
3
0

)
= 1,

a4 = 0 = a5, a6, . . .
Can we find a generating function for this sequence?
f(x)=

∑∞
i=1

(
n
k

)
xi

Binomial Theorem: (x + y)n =
∑∞

i=1

(
n
i

)
xiyn−i

set y=1 in this expression to get
(x + 1)n =

∑∞
i=1

(
n
i

)
xi

Generalized Binomial coefficient if c∈ R and k≥0 is an integer we can define(
c
k

)
= c(c−1)...(c−k)

k!

Note: that if c is a positive integer then this definition agrees with the old
definition.
Using this definition we get generalized binomial theorem for c ∈ R
(x + 1)n =

∑∞
i=1

(
c
i

)
xi}Infinite if c6∈ N

Can we find a generating function for this sequence?
f(x)=

∑∞
i=1

(
n
k

)
xi

Suppose we have a sum of n terms x1 + x2 + · · ·+ xn we care about order in
which we do the addition.
we want to insert parenthesis to make it unambiguous the order in which the
additions are preformed
Example: n=4
x1 + x2 + x3 + x4

((x1 + x2) + x3) + x4

x1 + (x2 + (x3 + x4))
(x1 + (x2 + x3)) + x4

(x1 + x2) + (x3 + x4)
These are all the ways (5 ways to do it)
What if we had n terms?
Let cn count the number of ways to do addition of n terms
c1=1, c2 = 1, c3 = 2, c4 = 5,. . .
if we have n terms, there has to be 1 addition that happens last. Pick which
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addition happens last
there are Size: k + (n-k)
cn =

∑n−1
i=1 cicn−i

cn−i¡- ways to sum the last (n-i) terms
ci¡- ways to sum the first i terms
Use generating functions:
Define c(x) =

∑∞
i=0 cix

i

lest square this!
c(x)2 = (

∑∞
i=0 cix

i)2 =
c(x)2 =

∑∞
j=0(

∑∞
i=0 cicj−1)x

j∑∞
i=0 cicj−1 ¡- foil out squares

Counting the ways to insert parenthesis to make a1 + a2 + · · · + an unam-
biguous (if order of doing addition mattered) count this by cnsome operation
occurs last
(a1 + · · ·+ ai) + (ai+1 + · · ·+ an)
ci = a1 + · · ·+ ai
cn−i = ai+1 + · · ·+ an
Use generating Functions
c(x) =

∑n−1
i=1 cicn−i

c(x)2 = (
∑∞

i=0 cix
i)2 =

c(x)2 =
∑∞

j=0(
∑∞

i=0 cicj−1)x
j
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c(x)(x(c(x))) = (c0 + c1x + c2x
2 + . . . )(c0 + c1x + c2x

2 + . . . )

= 0x0 + c20x + (c0c1 + c1c0)x
2 + (c0c2 + c1c1 + c2c0)x

3 + . . .

c(x) = c0 + c1x + c2x
2 + · · ·+ cjx

j sum operation occurs

c0 = 1

cjx = (

j−1∑
i=0

cjcj−i−1)x
i

c(x) = 1 + xc(x)2

cn =
n−1∑
i=0

cicn−i−1Valid for n ≥ 1

c(x) = c0 + c1x + c2x
2 + . . .

1 + xc(x)2 = 1 + x ∗ ((c0c0) + (c1c0 + c0c1)x + . . . )Remember c0 = 1

c(x) = 1 + xc(x)2

0 = 1− c(x) + x(c(x))2let y =c(x)

0 = 1− (1)y + xy2By Quadratic Formula

y =
1±
√

1− 4x

2x

c(x) =
1±
√

1− 4x

2x
We don’t want an x−1term in the generating function

= if we choose ”t” we would get a (1/x) term, therefore

c(x) =
1±
√

1− 4x

2x
=
∞∑
n=0

cnx
n

=
1

2x
(1− 4x)1/2Us generalized binomial theorem!

=
1

2x
(1−

∞∑
i=1

(−4x)i
(

1/2

i

)
)

=
−1

2
(−1)n+1(4)n+1(

1
2
(1
2
− 1)(1

2
− 2) . . . (1

2
− n)

(n + 1)!
)

=
1

2
(−1)n(4)n+1(

1
2
(−1

2
)(−3

2
) . . . (1−2n

2
)

(n + 1)!
)

=
1

2
(4)n+1((

(1
2
)(3

2
) . . . (2n−1

2
)

(n + 1)!
)
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= (4)n(
(1
2
)n(1)(3) . . . (2n− 1)

(n + 1)!
)

= (4)n(
(1
2
)n(1)(3) . . . (2n− 1)

(n + 1)!
)(

(n!)(1/2)n(2n)

n!
)

=
4n(1/2)n(1/2)n(2n!)

(n + 1)!(n!)

=
2n!

(n + 1)!n!

=
1

n + 1

2n!

n!n!

=
1

n + 1

(
2n

n

)
cn =

1

n + 1

(
2n

n

)
< −This is the Catalan Numbers

Corollary:
(
2n
n

)
is divisible by (n+1)

Modular arithmetic:
Definition: a≡ b(mod c) ”a is congruent to b modulo c” if c|(a-b)
Example: 12 ≡ 2(mod 5) because 5|(12-2)
Theorem:≡ is an equivalence relation
Recall an equivalence relation ˜satisfies 3 things:

• Reflexive: a ˜a

• Symmetric: a ˜b, b ˜a

• Transitive: if a ˜b, b ˜c, then a ˜c

Proof. Reflexive and Symmetric properties are trivial to show.
Transitive: Suppose a ≡ b(mod n)) and b ≡ c(mod n))
This means n|(a-b) and n|(b-c)
(a-b)+(b-c)=(a-c)
since n divides the 1st two it divides the third as well so a≡c(mod n)

Theorem if a ≡ a’ (mod n) and b ≡ b’ (mod n) then a ± b ≡ a’± b’ (mod
n) and ab ≡ a’b’ (mod n)
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Proof. Addition/subtraction is trivial to show so we will proceed to prove
multiplication. we know n|(a-a’) and n|(b-b’), we want to show that n|(ab-a’
b’) write

ab− a′b′ = ab + (ab′ − ab′)− a′b′ = a(b− b′) + (a− a′)b′

and we know that n divides (b-b’) and (a-a’)
So n|(ab-a’ b’)

DefinitionWe call equivalence class of numbers equivalent to a(mod n)
the residue class a(mod n) or sometimes a residue.
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DATE September 18, 2019
We start the class by proposing a question:
When can we ”divide” modulo n?
We introduce a law of modulo

Cancellation Law: if bc ≡ bd (mod n) and gcd(b,n) = 1 then c ≡ d
(mod n)

Proof. : Suppose gcd(b,n)=1 and bc ≡ bd (mod n) then n—(bc-db) since
gcd(b,n)=1 this tells us that n—(c-d) so c ≡ d (mod n)

This is false in general when gcd(b,n) 6= 1
Example: 3(4) ≡ 3(8) (mod 12) but 4 6≡ 8 (mod 12).

Define: A complete reside System (mod n) is a set {r1, r2, . . . , rk} of in-
tegers such that

1. ri 6≡ rj (mod n) if i 6= j

2. if m is any integer where exists an rj with m ≡ rj (mod n)

Example: If n=3 {0,1,2} forms a complete residue system (mod 3), {-1,0,1}
is also a complete residue system, so does {5,9,22}

Theorem: Any Complete Residue System (mod n) {r1, r2, . . . , rk} has
exactly n elements.

Proof. Take t1 = 0, t2 = 1, . . . , tn = n - 1.
The set {t1, t2, . . . , tn} forms a complete residue system since:

1. If i 6= j then 1+i-t, where 1<n. so ti 6= tj (mod n)

2. If m is any integer we can do division with remainder m = q*n + s,
0 ≤ s < n so m ≡ s (mod n) and s ∈ {t1, t2, . . . , tn}

Note that {t1, t2, . . . , tn} has size n. Now if {r1, r2, . . . , rn} is also a complete
residue system. Then each ri ≡ tj for some j. we can’t have rj ≡ tj and
rl ≡ tj (mod n) if i 6= l since the rj are all distinct so k ≤ n. likewise we can
match an rj to each tj since the r’s also form a complete system so k ≥ n.
So any complete residue system has size n.

Definition: Say that {r1, r2, . . . , rk} is a reduced residue system (mod
n) if
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1. ri 6≡ rj for any i 6= j

2. gcd(ri,n)=1 for all i

3. if gcd(m,n)=1 then there exists an i with m ≡ ri (mod n)

Example: n=12 {1,5,7,11} or {13,17,19,23} or {-5,-1,1,5}
Definition: for any positive integer n we define ϕ(n) to be the count of
numbers i ∈ {1, 2, . . . , n− 1} which have gcd(i,n)=1
Example: ϕ(12)=4 Note
Observation: if n is prime the ϕ(p) = p-1
Example: p=5 reduced residue system {1,2,3,4}
Theorem: Any reduced residue system (mod n) contains exactly ϕ elements

Proof. It is nearly identical to the one for complete residue systems.

Note: if we take any two elements of a reduced system and multiply
them we get another integer which has gcd of 1 with n and thus is equivalent
to a different reduced residue (mod n).
The collection of reduced residue form a group under multiplication
Denoted by (Z/nZ)x - for a group
Euler’s Theorem: if n is any positive integer and gcd(a,n) = 1 then aϕ(n)

≡ 1 (mod n)

Proof. Let {r1, r2, . . . , rk} be a reduced residue system (mod n)
Note: it has size ϕ(n) multiply these residue together R = r1, r2, . . . , rϕ(n)(mod
n)
Now let si = ari(mod n) Then the si are all distinct mod n since if si ≡ sj
(mod n) then a ∗ ri ≡ a ∗ rj (mod n) by the cancellation property we have
ri ≡ rj (mod n). Therefore {s1, s2, . . . , sϕ} is also a reduced residue system.
Multiply the si together to get
s1, s2, . . . , sϕ(n) ≡ r1, r2, . . . , rϕ(n) ≡ R (mod n) (possibly in a different order)
Also s1, s2, . . . , sϕ(n) = (ar1), (ar2), . . . , (arϕ(n)) ≡ aϕ(n)r1r2 . . . rϕ(n ≡ aϕ(n)R
(mod n)
so R≡ aϕ(n) R(mod n) Since gcd(R,n)=1
use the cancellation property to get 1 ≡ aϕ(n) (mod n)

Corollary: (Fermat’s Little Theorem) If P is a prime ϕ(p) =p-1
so aϕ(p) ≡ ap−1 ≡ 1(mod n).
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