Number Theory Notes

Ernesto Diaz September 16, 18 2019 DATE September 16, 2019

Consider our binomial Coefficient $\binom{n}{k}$ if $0 \le k \le n$ we define

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

for k > n we define $\binom{n}{k} = 0$. Fix a value of n, let $a_k = \binom{n}{k}$ Example n=3, $a_0 = {3 \choose 0} = 1$, $a_1 = {3 \choose 0} = 3$, $a_2 = {3 \choose 0} = 3$, $a_3 = {3 \choose 0} = 1$, $a_4 = 0 = a_5, a_6, \dots$ Can we find a generating function for this sequence? $f(\mathbf{x}) = \sum_{i=1}^{\infty} {\binom{n}{k} \vec{x^i}}$ Binomial Theorem: $(x+y)^n = \sum_{i=1}^{\infty} {n \choose i} x^i y^{n-i}$ set y=1 in this expression to get $(x+1)^n = \sum_{i=1}^{\infty} {n \choose i} x^i$ Generalized Binomial coefficient if $c \in \mathbb{R}$ and $k \ge 0$ is an integer we can define $\binom{c}{k} = \frac{c(c-1)\dots(c-k)}{k!}$ Note: that if c is a positive integer then this definition agrees with the old definition. Using this definition we get generalized binomial theorem for $c \in \mathbb{R}$ $(x+1)^n = \sum_{i=1}^{\infty} {c \choose i} x^i$ Infinite if $c \notin \mathbb{N}$ Can we find a generating function for this sequence? $f(\mathbf{x}) = \sum_{i=1}^{\infty} {n \choose k} \bar{x^i}$ Suppose we have a sum of n terms $x_1 + x_2 + \cdots + x_n$ we care about order in which we do the addition. we want to insert parenthesis to make it unambiguous the order in which the additions are preformed Example: n=4 $x_1 + x_2 + x_3 + x_4$ $((x_1 + x_2) + x_3) + x_4$ $x_1 + (x_2 + (x_3 + x_4))$ $(x_1 + (x_2 + x_3)) + x_4$ $(x_1 + x_2) + (x_3 + x_4)$ These are all the ways (5 ways to do it)

What if we had n terms?

Let c_n count the number of ways to do addition of n terms

 $c_1=1, c_2=1, c_3=2, c_4=5, \ldots$

if we have n terms, there has to be 1 addition that happens last. Pick which

addition happens last there are Size: k + (n-k) $c_n = \sum_{i=1}^{n-1} c_i c_{n-i}$ c_{n-i} ; ways to sum the last (n-i) terms c_i ; ways to sum the first i terms Use generating functions: Define $c(x) = \sum_{i=0}^{\infty} c_i x^i$ lest square this! $c(x)^2 = (\sum_{i=0}^{\infty} c_i x^i)^2 =$ $c(x)^2 = \sum_{j=0}^{\infty} (\sum_{i=0}^{\infty} c_i c_{j-1}) x^j$ $\sum_{i=0}^{\infty} c_i c_{j-1}$; foil out squares Counting the ways to insert parenthesis to make $a_1 + a_2 + \dots + a_n$ unambiguing (if order of doing addition mattered) count this by c some operation

Counting the ways to insert parenthesis to make $a_1 + a_2 + \cdots + a_n$ unambiguous (if order of doing addition mattered) count this by c_n some operation occurs last

$$(a_1 + \dots + a_i) + (a_{i+1} + \dots + a_n)$$

$$c_i = a_1 + \dots + a_i$$

$$c_{n-i} = a_{i+1} + \dots + a_n$$

Use generating Functions

$$c(x) = \sum_{i=1}^{n-1} c_i c_{n-i}$$

$$c(x)^2 = (\sum_{i=0}^{\infty} c_i x^i)^2 =$$

$$c(x)^2 = \sum_{j=0}^{\infty} (\sum_{i=0}^{\infty} c_i c_{j-1}) x^j$$

$$\begin{split} c(x)(x(c(x))) &= (c_0 + c_1 x + c_2 x^2 + \ldots)(c_0 + c_1 x + c_2 x^2 + \ldots) \\ &= 0x^0 + c_0^2 x + (c_0 c_1 + c_1 c_0)x^2 + (c_0 c_2 + c_1 c_1 + c_2 c_0)x^3 + \ldots \\ c(x) &= c_0 + c_1 x + c_2 x^2 + \cdots + c_j x^j \text{ sum operation occurs} \\ c_0 &= 1 \\ c_j x &= (\sum_{i=0}^{j-1} c_j c_{j-i-1})x^i \\ c(x) &= 1 + xc(x)^2 \\ c_n &= \sum_{i=0}^{n-1} c_i c_{n-i-1} \text{Valid for } n \geq 1 \\ c(x) &= c_0 + c_1 x + c_2 x^2 + \ldots \\ 1 + xc(x)^2 &= 1 + x * ((c_0 c_0) + (c_1 c_0 + c_0 c_1)x + \ldots) \text{Remember } c_0 = 1 \\ c(x) &= 1 + xc(x)^2 \\ 0 &= 1 - c(x) + x(c(x))^2 \text{let } y = c(x) \\ 0 &= 1 - (1)y + xy^2 \text{By Quadratic Formula} \\ y &= \frac{1 \pm \sqrt{1 - 4x}}{2x} \\ c(x) &= \frac{1 \pm \sqrt{1 - 4x}}{2x} \text{We don't want an } x^{-1} \text{term in the generating function} \\ &= \text{if we choose "t" we would get a } (1/x) \text{ term, therefore} \\ c(x) &= \frac{1 \pm \sqrt{1 - 4x}}{2x} \\ &= \sum_{n=0}^{\infty} c_n x^n \\ &= \frac{1}{2x} (1 - 4x)^{1/2} \text{Us generalized binomial theorem!} \\ &= \frac{1}{2x} (1 - \sum_{i=1}^{\infty} (-4x)^i \binom{1/2}{i}) \\ &= \frac{-1}{2} (-1)^{n+1} (4)^{n+1} (\frac{\frac{1}{2}(\frac{1}{2} - 1)(\frac{1}{2} - 2) \dots (\frac{1}{2} - n)}{(n+1)!}) \\ &= \frac{1}{2} (4)^{n+1} ((\frac{\frac{1}{2})(\frac{2}{3}) \dots (\frac{1-2n}{2})}{(n+1)!}) \end{aligned}$$

$$= (4)^{n} \left(\frac{\left(\frac{1}{2}\right)^{n}(1)(3)\dots(2n-1)}{(n+1)!}\right)$$

$$= (4)^{n} \left(\frac{\left(\frac{1}{2}\right)^{n}(1)(3)\dots(2n-1)}{(n+1)!}\right) \left(\frac{(n!)(1/2)^{n}(2^{n})}{n!}\right)$$

$$= \frac{4^{n}(1/2)^{n}(1/2)^{n}(2n!)}{(n+1)!(n!)}$$

$$= \frac{2n!}{(n+1)!n!}$$

$$= \frac{1}{n+1}\frac{2n!}{n!n!}$$

$$= \frac{1}{n+1}\binom{2n}{n}$$

$$c_{n} = \frac{1}{n+1}\binom{2n}{n} < -\text{This is the Catalan Numbers}$$

Corollary: $\binom{2n}{n}$ is divisible by (n+1) Modular arithmetic: Definition: $a \equiv b \pmod{c}$ "a is congruent to b modulo c" if c|(a-b) Example: $12 \equiv 2 \pmod{5}$ because 5|(12-2)**Theorem:** \equiv is an equivalence relation Recall an equivalence relation \tilde{s} satisfies 3 things:

- $\bullet\,$ Reflexive: a $\ \tilde{}\,a$
- Symmetric: a ~b, b ~a
- Transitive: if a ~b, b ~c, then a ~c

Proof. Reflexive and Symmetric properties are trivial to show. Transitive: Suppose $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ This means n | (a-b) and n | (b-c) (a-b)+(b-c)=(a-c)since n divides the 1st two it divides the third as well so $a \equiv c \pmod{n}$ □

Theorem if $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$ then $a \pm b \equiv a' \pm b' \pmod{n}$ and $ab \equiv a'b' \pmod{n}$

Proof. Addition/subtraction is trivial to show so we will proceed to prove multiplication. we know n|(a-a') and n|(b-b'), we want to show that n|(ab-a'b') write

$$ab - a'b' = ab + (ab' - ab') - a'b' = a(b - b') + (a - a')b'$$

and we know that n divides (b-b') and (a-a') So n|(ab-a' b')|

DefinitionWe call equivalence class of numbers equivalent to $a \pmod{n}$ the residue class $a \pmod{n}$ or sometimes a residue.

DATE September 18, 2019 We start the class by proposing a question: When can we "divide" modulo n? We introduce a law of modulo

Cancellation Law: if $bc \equiv bd \pmod{n}$ and gcd(b,n) = 1 then $c \equiv d \pmod{n}$

Proof. : Suppose gcd(b,n)=1 and $bc \equiv bd \pmod{n}$ then n—(bc-db) since gcd(b,n)=1 this tells us that n—(c-d) so $c \equiv d \pmod{n}$

This is false in general when $gcd(b,n) \neq 1$ Example: $3(4) \equiv 3(8) \pmod{12}$ but $4 \not\equiv 8 \pmod{12}$.

Define: A complete reside System (mod n) is a set $\{r_1, r_2, \ldots, r_k\}$ of integers such that

- 1. $r_i \not\equiv r_j \pmod{n}$ if $i \neq j$
- 2. if m is any integer where exists an r_j with m $\equiv r_j \pmod{n}$

Example: If $n=3 \{0,1,2\}$ forms a complete residue system (mod 3), $\{-1,0,1\}$ is also a complete residue system, so does $\{5,9,22\}$

Theorem: Any Complete Residue System (mod n) $\{r_1, r_2, \ldots, r_k\}$ has exactly n elements.

Proof. Take $t_1 = 0, t_2 = 1, ..., t_n = n - 1$. The set $\{t_1, t_2, ..., t_n\}$ forms a complete residue system since:

- 1. If $i \neq j$ then 1+i-t, where 1<n. so $t_i \neq t_j \pmod{n}$
- 2. If m is any integer we can do division with remainder $m = q^*n + s$, $0 \le s < n$ so $m \equiv s \pmod{n}$ and $s \in \{t_1, t_2, \ldots, t_n\}$

Note that $\{t_1, t_2, \ldots, t_n\}$ has size n. Now if $\{r_1, r_2, \ldots, r_n\}$ is also a complete residue system. Then each $r_i \equiv t_j$ for some j. we can't have $r_j \equiv t_j$ and $r_l \equiv t_j \pmod{n}$ if $i \neq l$ since the r_j are all distinct so $k \leq n$. likewise we can match an r_j to each t_j since the r's also form a complete system so $k \geq n$. So any complete residue system has size n.

Definition: Say that $\{r_1, r_2, \ldots, r_k\}$ is a reduced residue system (mod n) if

- 1. $r_i \not\equiv r_j$ for any $i \neq j$
- 2. $gcd(r_i,n)=1$ for all i
- 3. if gcd(m,n)=1 then there exists an i with $m \equiv r_i \pmod{n}$

Example: n=12 {1,5,7,11} or {13,17,19,23} or {-5,-1,1,5} **Definition**: for any positive integer n we define $\varphi(n)$ to be the count of numbers $i \in \{1, 2, ..., n-1\}$ which have gcd(i,n)=1Example: $\varphi(12)=4$ Note **Observation**: if n is prime the $\varphi(p) = p-1$ Example: p=5 reduced residue system {1,2,3,4}

Theorem: Any reduced residue system (mod n) contains exactly φ elements

Proof. It is nearly identical to the one for complete residue systems. \Box

Note: if we take any two elements of a reduced system and multiply them we get another integer which has gcd of 1 with n and thus is equivalent to a different reduced residue (mod n).

The collection of reduced residue form a group under multiplication Denoted by $(\mathbb{Z}/n\mathbb{Z})^x$ - for a group

Euler's Theorem: if n is any positive integer and gcd(a,n) = 1 then $a^{\varphi(n)} \equiv 1 \pmod{n}$

Proof. Let $\{r_1, r_2, \ldots, r_k\}$ be a reduced residue system (mod n) **Note**: it has size $\varphi(n)$ multiply these residue together $\mathbf{R} = r_1, r_2, \ldots, r_{\varphi(n)} \pmod{n}$

Now let $s_i = ar_i \pmod{n}$ Then the s_i are all distinct mod n since if $s_i \equiv s_j \pmod{n}$ then $a * r_i \equiv a * r_j \pmod{n}$ by the cancellation property we have $r_i \equiv r_j \pmod{n}$. Therefore $\{s_1, s_2, \ldots, s_{\varphi}\}$ is also a reduced residue system. Multiply the s_i together to get

 $s_1, s_2, \ldots, s_{\varphi(n)} \equiv r_1, r_2, \ldots, r_{\varphi(n)} \equiv \mathbb{R} \pmod{n}$ (possibly in a different order) Also $s_1, s_2, \ldots, s_{\varphi(n)} = (ar_1), (ar_2), \ldots, (ar_{\varphi(n)}) \equiv a^{\varphi(n)}r_1r_2 \ldots r_{\varphi(n)} \equiv a^{\varphi(n)}\mathbb{R} \pmod{n}$ (mod n)

so $R \equiv a^{\varphi(n)} R \pmod{n}$ Since gcd(R,n)=1use the cancellation property to get $1 \equiv a^{\varphi(n)} \pmod{n}$

Corollary: (Fermat's Little Theorem) If P is a prime $\varphi(p) = p-1$ so $a^{\varphi(p)} \equiv a^{p-1} \equiv 1 \pmod{n}$.