MATH 565: Week 13 Notes

Steven C. White

November 30, 2019

How Do We Solve $\left(\frac{2}{p}\right)$?

$$
\begin{aligned}
\left(\frac{2}{p}\right) & =\left(\frac{-(-2)}{p}\right) \\
& =\left(\frac{-1}{p}\right)\left(\frac{-2}{p}\right) \\
& =\left(\frac{-1}{p}\right)\left(\frac{p-2}{p}\right) \\
& =\left(\frac{-1}{p}\right)\left(\frac{p}{p-2}\right) \mathrm{p} \text { and p-2 cannot both be } \equiv 3(\bmod 4) \\
& =\left(\frac{-1}{p}\right)\left(\frac{2}{p-2}\right) \text { repeat this process } \\
& =\left(\frac{-1}{p}\right)\left(\frac{-1}{p-2}\right) \cdots\left(\frac{-1}{3}\right) \\
& =(-1)^{\frac{p-1}{2}}(-1)^{\frac{p-3}{2}} \cdots(-1)^{2}(-1)^{1} \\
& =(-1)^{1+2+\cdots+\frac{p-3}{2}+\frac{p-1}{2}} \\
& =(-1)^{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)} \\
& =(-1)^{\frac{p^{2}-1}{8}}
\end{aligned}
$$

Then,

$$
(-1)^{\frac{p^{2}-1}{8}}= \begin{cases}1 & \text { if } p^{2} \equiv 1(\bmod 16) \Leftrightarrow p \equiv 1,7(\bmod 8) \\ -1 & \text { if } p^{2} \equiv 1(\bmod 8) \Leftrightarrow p \equiv 3,5(\bmod 8)\end{cases}
$$

Frequency Patterns of QR's (see table at the end of the document). So for any odd prime it seems that there might be $\frac{p-1}{2}$ number of QRs and nQRs. Are there any patterns to the table? How often are two quadratic residues next to eachother? For $p=29$, there are 6 n where $\left(\frac{n}{29}\right)=\left(\frac{n+1}{29}\right)=1$. If quadratic residues are "random" like coin flips we would expect around $\frac{p-1}{4}$ of the residues to be consecutive QRs.
Theorem 1: For any fixed a and b and prime p

$$
\sum_{n=0}^{p-1}\left(\frac{(n-a)(n-b)}{p}\right)= \begin{cases}p-1 & \text { if } a \equiv b(\bmod \mathrm{p}) \\ -1 & \text { otherwise }\end{cases}
$$

Proof. Consider the sum over a complete residue class (mod p$)$

$$
\sum_{n(\bmod p)}\left(\frac{(n-a)(n-b)}{p}\right)
$$

As n ranges through all residues $(\bmod p)$, so does $(n-a)$ so we can shift the index $(n-a) \rightarrow n$.

$$
\sum_{n(\bmod p)}\left(\frac{n(n-b+a)}{p}\right)
$$

If $a \equiv b(\bmod \mathrm{p})$, then $a-b \equiv 0(\bmod \mathrm{p})$. So the sum becomes

$$
\sum_{n(\bmod p)}\left(\frac{n^{2}}{p}\right)=p-1
$$

Now let $a \not \equiv b(\bmod \mathrm{p})$, and let $\lambda \equiv a-b(\bmod \mathrm{p})$. So our sum becomes

$$
\sum_{n(\bmod p)}\left(\frac{n(n+\lambda)}{p}\right)=\sum_{\substack{n(\bmod p) \\ n \neq 0(\bmod p)}}\left(\frac{n(n+\lambda)}{p}\right)
$$

If $n \not \equiv 0(\bmod p)$, then n^{-1} exists and $\left(\frac{\left(n^{-1}\right)^{2}}{p}\right)=1$. So we can write

$$
\sum_{\substack{n(\bmod p) \\ n \not \equiv 0(\bmod p)}}\left(\frac{n(n+\lambda)}{p}\right)=\sum_{\substack{n(\bmod p) \\ n \neq 0(\bmod p)}}\left(\frac{\left(n^{-1}\right)^{2}}{p}\right)\left(\frac{n(n+\lambda)}{p}\right)=\sum_{\substack{n(\bmod p) \\ n \neq 0(\bmod p)}} \frac{1+\lambda n^{-1}}{p}
$$

As n varies over a complete nonzero residue class, so does $n^{-1}(\bmod p)$. So we can write the sum as

$$
\sum_{\substack{m(\bmod p) \\ m \neq 0(\bmod p)}} \frac{1+\lambda m}{p}
$$

As m varies over a complete nonzero residue class, so does $\lambda m(\bmod p)$. So we can write the sum as

$$
\sum_{\substack{l(\text { modp }) \\ l \not \equiv 0(\text { mod })}}\left(\frac{1+l}{p}\right)=\sum_{l=1}^{p-1}\left(\frac{1+l}{p}\right)=\sum_{l=2}^{p}\left(\frac{l}{p}\right)=0-\left(\frac{1}{p}\right)=-1
$$

Theorem 2: Let p be an odd prime. Let $\mathrm{N}(\mathrm{p})$ be the number of consecutive $\mathrm{QRs}(\bmod \mathrm{p})$. Then,

$$
N(p)=\frac{1}{4}\left(p-4-(-1)^{\frac{p-1}{2}}\right)
$$

Proof. First note that

$$
\sum_{n=1}^{p-2}\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right)=\sum_{n=0}^{p-1}\left(\frac{n(n+1)}{p}\right)=-1 \text { by Theorem } 1
$$

Let

$$
C_{p}(n):=\frac{1}{4}\left(1+\left(\frac{n}{p}\right)\right)\left(1+\left(\frac{n+1}{p}\right)\right)= \begin{cases}1 & \text { if } \mathrm{n} \text { and } \mathrm{n}+1 \text { are both } \mathrm{QR} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\begin{aligned}
N(p) & =\sum_{n=1}^{p-2} C_{p}(n) \\
& =\sum_{n=1}^{p-2} \frac{1}{4}\left(1+\left(\frac{n}{p}\right)\right)\left(1+\left(\frac{n+1}{p}\right)\right) \\
& =\frac{1}{4} \sum_{n=1}^{p-2} 1+\left(\frac{n}{p}\right)+\left(\frac{n+1}{p}\right)+\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right) \\
& =\frac{1}{4}\left(\sum_{n=1}^{p-2} 1+\sum_{n=1}^{p-2}\left(\frac{n}{p}\right)+\sum_{n=1}^{p-2}\left(\frac{n+1}{p}\right)+\sum_{n=1}^{p-2}\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right)\right) \\
& =\frac{1}{4}\left(p-2-\left(\frac{p-1}{p}\right)-\left(\frac{1}{p}\right)-1\right) \\
& =\frac{1}{4}\left(p-4-\left(\frac{-1}{p}\right)\right) \\
& =\frac{1}{4}\left(p-4-(-1)^{\frac{p-1}{2}}\right)
\end{aligned}
$$

