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Then,
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{
1 if p2 ≡ 1 (mod 16) ⇔ p ≡ 1,7 (mod 8)

−1 if p2 ≡ 1 (mod 8) ⇔ p ≡ 3,5 (mod 8)

Frequency Patterns of QR’s (see table at the end of the document). So for any odd prime it
seems that there might be p−1

2 number of QRs and nQRs. Are there any patterns to the table? How often
are two quadratic residues next to eachother? For p=29, there are 6 n where

(
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= 1. If quadratic

residues are ”random” like coin flips we would expect around p−1
4 of the residues to be consecutive QRs.

Theorem 1: For any fixed a and b and prime p
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As n ranges through all residues (mod p), so does (n-a) so we can shift the index (n-a) → n.∑
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If n 6≡ 0 (mod p), then n−1 exists and
(

(n−1)2

p

)
= 1. So we can write

∑
n(modp)

n 6≡0(modp)

(
n(n+ λ)

p

)
=

∑
n(modp)

n 6≡0(modp)

(
(n−1)2

p

)(
n(n+ λ)

p

)
=

∑
n(modp)

n6≡0(modp)

1 + λn−1

p

As n varies over a complete nonzero residue class, so does n−1 (mod p). So we can write the sum as∑
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Theorem 2: Let p be an odd prime. Let N(p) be the number of consecutive QRs (mod p). Then,
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Proof. First note that
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1 if n and n+1 are both QR
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n
(

n
29

)
1 1
2 -1
3 -1
4 1
5 1
6 1
7 1
8 -1
9 1
10 -1
11 -1
12 -1
13 1
14 -1
15 -1
16 1
17 -1
18 -1
19 -1
20 1
21 -1
22 1
23 1
24 1
25 1
26 -1
27 -1
28 1
29 0
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