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Observations: Let p ∈ {5, 13, 17}. Then
(

p
q

)
=
(

q
p

)
and p ≡ 1 (mod 4). Also, let p, q ∈ {3, 7, 11}. Then(

p
q

)
= −

(
q
p

)
and p ≡ q ≡ 3 (mod 4).

Conjecture: Suppose p and q are both odd primes.

If either p ≡ 1 (mod 4) or q ≡ 1 (mod 4), then
(

p
q

)
=
(

q
p

)
.

If p ≡ q ≡ 3 (mod 4), then
(

p
q

)
= −

(
q
p

)
.

This was observed by Legendre when he defined numbers this way.

Notation. (Z/nZ)
×

= the set of reduced residues (mod n)
(Z/pqZ)

×
= {1 ≤ a < pq | p - a, q - a} = the set of numbers 1 through pq − 1 not divisible by p or q, where

p and q are odd primes and p 6= q
(Z/pZ)

× × (Z/qZ)
×

= {(a, b) | 1 ≤ a < p, p - a, 1 ≤ b < q, q - b}

Chinese Remainder Theorem: The map σ : (Z/pqZ)
× → (Z/pZ)

× × (Z/qZ)
×

given by σ(k) =
(k(mod p)), k(mod q)) is a bijection. So | (Z/pqZ)

× |=| (Z/pZ)
× × (Z/qZ)

× |= (p− 1)(q − 1) = φ(pq).
Let R = {1 ≤ a < pq

2 | p - a, q - b}. Then, | R |= 1
2φ(pq).

Let S = {(a, b) | 1 ≤ a < p, 1 ≤ b < q
2} ⊆ (Z/pZ)

× × (Z/qZ)
×

. Then, | S |= 1
2φ(pq).

Theorem: If k ∈ R, then there exists (a, b) ∈ S such that σ(k) = ±1(a, b).

Example: Let p = 5 and q = 3. Then R = {1, 2, 4, 7} and (Z/15Z)
×

and

1



S = {(a, b) | 1 ≤ a < 5, 1 ≤ b < 3
2} = {(1, 1), (2, 1), (3, 1), (4, 1)}. Note that

φ(1) = (1, 1)

φ(2) = (2, 2) = −(3, 1)

φ(3) = (4, 1)

φ(4) = (2, 1)

So φ

( ∏
k∈R

k

)
=
∏
k∈R

σ(k) =
∏
k∈R
±1 · (a, b) = e

∏
k∈R

(a, b), where e = ±1.

Note that for each (a, b) ∈ S there is a unique k ∈ R such that (a, b) = ±(k, k).
Then

∏
(a,b)∈S

(a, b) = e
∏
k∈R

(k, k). Let P = p−1
2 and Q = q−1

2 . Consider the left hand side of the previous

equation. ∏
(a,b)∈S

(a, b) =
∏

1≤a<p
1≤b< q

2

(a, b)

=

(
(p− 1)!

q−1
2 ,

((
q − 1

2

)
!

)p−1
)

=
(
(p− 1)!Q, Q!2P

)
Observe that

Q!2 =

 ∏
1≤k< q−1

2

k

 ∏
1≤k< q−1

2

k


=

 ∏
1≤k< q−1

2

k

 ∏
q−1
2 ≤m<q

m

 (−1)
q−1
2

= (q − 1)!(−1)
q−1
2

Continuing the original equality and applying Wilson’s Theorem

=
(

(p− 1)!Q,
(
(q − 1)!(−1)Q

)P)
=
(

(−1)Q,
(
(−1)(−1)Q

)P)
=
(
(−1)Q, (−1)P (−1)PQ

)
Consider the first (mod p) coordinate of the right hand side∏

k∈R

k =
∏

1≤k≤ pq
2

p-k,q-k

k

=

 ∏
1≤k<p

k


︸ ︷︷ ︸

(p-1)!

 ∏
p≤k<2p

k


︸ ︷︷ ︸

(p-1)!

· · ·

 ∏
(Q−1)p≤k<Qp

k


︸ ︷︷ ︸

(p-1)!

 ∏
Qp≤k< pq

2

k


 ∏

1≤k< pq
2

q|k

k


−1

︸ ︷︷ ︸
divide out q’s

Observe that  ∏
1≤k< pq

2

q|k

k


−1

=

 ∏
1≤k≤ p−1

2 =P

qk

−1 =
1( ∏

1≤k≤P
k

)
qP
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and  ∏
Qp≤k< pq

2 =Qp+ p
2

k

 ≡
 ∏

1≤k≤P

k


Then continuing the equality we have

=

(p− 1)!Q

( ∏
1≤k≤P

k

)
( ∏

1≤k≤P
k

)
qP

=
(p− 1)!Q

qP

= (−1)Q(q−1)P

= (−1)Q(q−1)
p−1
2 (mod p)

= (−1)Q
(
q−1

p

)
= (−1)Q

(
q

p

)

This is the first coordinate. This side is symmetric in p and q so the second coordinate is (−1)P
(

p
q

)
. Now,

plug all of this back into the original equation∏
(a,b)∈S

(a, b) = e
∏
k∈R

(k, k)

(
(−1)Q, (−1)P (−1)PQ

)
= e

(
(−1)Q

(
q

p

)
, (−1)P

(
p

q

))
Then,

(−1)Q = e(−1)Q(−1)P
(
q

p

)
1 = e

(
q

p

)
e =

(
q

p

)

(−1)P (−1)PQ = e(−1)P
(
p

q

)
(−1)PQ = e

(
p

q

)
(−1)PQ =

(
q

p

)(
p

q

)

Then, (
q

p

)(
p

q

)
=

{
−1 if P and Q odd ⇔ p−1

2 and q−1
2 odd ⇔ p and q ≡ 3(mod 4)

1 if P or Q even ⇔ p−1
2 or q−1

2 even ⇔ p or q ≡ 1(mod 4)

End Proof.
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Special Rule for 2 on p. (
2

p

)
=

{
−1 if p ≡ 3,5 (mod 8)

1 if p ≡ 1,7 (mod 8)
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