Class Notes

Connor Gephart

September 28 - October 302019

1 October 28

1.1 Analysis of $\pi(n)$

$\pi(x)$ is the count of the number of primes less than or equal to x .
Last time we talked about how $\lim _{x \rightarrow \inf } \pi(x)=\inf$

1.1.1 New Proof

Consider $\frac{1}{1-\frac{1}{2}}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots=\sum_{i=0}^{\inf } \frac{1}{2}^{i}$
$\frac{1}{1-\frac{1}{3}}=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\ldots=\sum_{i=0}^{\inf } \frac{1}{3}^{i}$
Multiply these together:
$\left(\frac{1}{1-\frac{1}{2}}\right)\left(\frac{1}{1-\frac{1}{3}}\right)=2\left(\frac{3}{2}=3\right.$
$\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right)\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\ldots\right)$
$=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots=\sum_{\mathrm{n} \text { is not divisible by any prime bigger than } 3} \frac{1}{n}\right.$
$\left(\frac{1}{1-\frac{1}{2}}\right)\left(\frac{1}{1-\frac{1}{3}}\right) \frac{1}{1-\frac{1}{5}}=\sum_{\mathrm{n}}$ is not divisible by any prime bigger than $5 \frac{1}{n}$
$\Pi_{p \leq N}\left(\frac{1}{1-\frac{1}{p}}\right)=\sum_{\mathrm{n} \text { is not divisible by any primes bigger than } \mathrm{N} \frac{1}{N}>\sum_{n \leq N} \frac{1}{n}, ~\left(\frac{1}{n}\right.}$
Calculus 2 tells us the Harmonic series diverges so as $N \rightarrow \inf , \Pi_{p \leq N}\left(\frac{1}{1-\frac{1}{p}} \rightarrow \inf \right.$ thus this product must have infinitely many primes to multiply

We want to use this idea to say more about $\pi(x)$.

1.2 Theorem

For any positive integer k, we have $\frac{\pi(x)}{x} \leq \frac{\varphi(k)}{k}+\frac{2 k}{k}$

1.2.1 Examples

Consider $k=6 \varphi(6)=2$ so all the primes besides 2,3 are either 1 or $5(\bmod 6)$.

$$
\frac{\pi(x)}{x} \leq \frac{2}{6}+\frac{2(6)}{x}
$$

$$
\frac{\pi(x)}{x} \leq \frac{1}{3}+\frac{12}{x}
$$

1.2.2 Proof

Let $M=\left\lfloor\frac{x}{k}\right\rfloor$
Divide the interval $[1, x]$ into M intervals of length k and one final shorter interval.
We want to count the primes smaller than x.
Between 0 and k, there is at most k primes.
Between k and $2 k$, there are k numbers forming a complete residue class (mod K).

Any prime p in this interval has $\operatorname{gcd}(p, k)=1$ so at most $\varphi(k)$ primes.
The last interval can't have more than k primes.
Total count $\pi(x) \leq k+\varphi(k)+\varphi(k)+\ldots+k \leq 2 k+(M-1) \varphi(k)$
Note that $M=\left\lfloor\frac{x}{k}\right\rfloor$ so $M \leq \frac{x}{k}$ which implies $k M \leq x$, thus $k(M-1) \leq x$ So

$$
\begin{aligned}
\frac{\pi(x)}{x} & \leq \frac{2 k+(M-1) \varphi(k)}{x} \\
& \leq \frac{2 k}{x}+\frac{(M-1) \varphi(k)}{x} \\
& \leq \frac{2 k}{x}+\frac{(M-1) \varphi(k)}{(M-1) k} \\
& \leq \frac{2 k}{x}+\frac{\varphi(k)}{k}
\end{aligned}
$$

1.3 Theorem

$\lim _{x \rightarrow \text { inf }} \frac{\pi(x)}{x}=0$
The proportion of integers that are prime trends to zero as x approaches infinity. Our goal is to show that for any $\epsilon>0$, there exists and N so that if $x \geq N$, then $\frac{\pi(x)}{x}<\epsilon$

1.3.1 Proof

Fix $\epsilon>0$
We want $\frac{\pi(x)}{x}<\epsilon$ for all $x \geq N$ for some N to be determined.
We know $\frac{\pi(x)}{x} \leq \frac{2 k}{x}+\frac{\varphi(k)}{k}$
Goal: Show that $\frac{2 k}{x}<\frac{\epsilon}{2}$ and $\frac{\varphi(k)}{k}<\frac{\epsilon}{2}$
Suppose $k=p_{1} p_{2} \ldots p_{r}$ is the product of the first r primes.

Then

$$
\begin{aligned}
\frac{\varphi(k)}{k} & =\frac{k\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{r}}\right)}{k} \\
& =\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{r}}\right) \\
& =\Pi_{i=1}^{r}\left(1-\frac{1}{p^{i}}\right)
\end{aligned}
$$

Recall: $\Pi_{p<N}\left(\frac{1}{1-\frac{1}{p}}>\sum_{n<N} \frac{1}{n}\right.$
$\Pi_{p<N}\left(1-\frac{1}{p}\right)^{-1}>\sum_{n<N} \frac{1}{n}$ which looks like $\Pi_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right.$.
Take the reciprocal of both sides
$\Pi_{p<N}\left(1-\frac{1}{p}<\left(\sum_{n<N} \frac{1}{n}\right)^{-1}\right.$. This sum diverges.
Lets pick N_{1} big enough so that $\left(\sum_{n<N} \frac{1}{n}\right)^{-1}<\frac{\epsilon}{2}$
Then we pick p_{r} to be the smallest prime bigger than N_{1} $\frac{\varphi(k)}{k}=\Pi_{p<p_{r}}\left(1-\frac{1}{p}<\Pi_{p<N}\left(1-\frac{1}{p}\right)<\left(\sum_{n<N_{1}} \frac{1}{n}\right)^{-1}<\frac{\epsilon}{2}\right.$ Pick $k=p_{1} p_{2} \ldots p_{r}$, then $\frac{\varphi(k)}{k}<\frac{\epsilon}{2}$. We are halfway there.

Now we want $\frac{2 k}{x}<\frac{\epsilon}{2}$
As long as $\frac{2 k}{\frac{\epsilon}{2}}<x$ and $N_{2}=\frac{4 k}{\epsilon}<x$ holds, then $\frac{2 k}{x}<\frac{\epsilon}{2}$
Now we let $N=\max \left(N_{1}, N_{2}\right)$
If $x>N$ then $\frac{\pi(x)}{x} \leq \frac{2 k}{x}+\frac{\varphi(k)}{k}$
Using the k we chose,
$\frac{\pi(x)}{x}<\frac{\epsilon}{2}+\frac{\epsilon}{2}$ so $\frac{\pi(x)}{x}<\epsilon$ which is what we wanted.

2 October 30

2.1 Analysis of $\pi(n)$

$\lim _{x \rightarrow \inf } \frac{\pi(x)}{x}=0$
Most numbers are not prime

2.2 Prime Number Theorem

$\lim _{x \rightarrow \inf } \frac{\pi(x)}{\ln (x)}=1$

2.3 Chebyshev's Theorem

There exist constants c_{1}, c_{2} such that $c_{1} \frac{x}{\ln (x)}<\pi(x)<c_{2} \frac{x}{\ln (x)}$

2.3.1 Lemma

For any $x, 0 \leq\lfloor 2 x\rfloor-2\lfloor x\rfloor \leq 1$

2.3.2 Proof

$x-1<\lfloor x\rfloor \leq x$
Multiply by 2 :
$2 x-2<2\lfloor x\rfloor \leq 2 x$
Replace x with $2 x$:
$2 x-1<\lfloor 2 x\rfloor \leq 2 x$
Bound $\lfloor 2 x\rfloor-2\lfloor x\rfloor$ below
$\lfloor 2 x\rfloor-2\lfloor x\rfloor>(2 x-1)-(2 x)$
$\lfloor 2 x\rfloor-2\lfloor x\rfloor>-1$
Bound above: $\lfloor 2 x\rfloor-2\lfloor x\rfloor<2 x-(2 x-2)$
$\lfloor 2 x\rfloor-2\lfloor x\rfloor<2$
Since $\lfloor 2 x\rfloor-2\lfloor x\rfloor$ is an integer strictly between -1 and 2 , the only integer possibilitiies in this case are 0 and 1 . Thus,
$0 \leq\lfloor 2 x\rfloor-2\lfloor x\rfloor \leq 1$

2.4 Theorem

The number of times that p divides $n!$ is $\sum_{i=1}^{\inf }\left\lfloor\frac{n}{p^{i}}\right\rfloor$

2.4.1 Example

$5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120=2^{3}(3)(5)$
2 divides 1203 times.

$$
\begin{aligned}
\sum_{i=1}^{\inf }\left\lfloor\frac{5}{2^{i}}\right\rfloor & =\left\lfloor\frac{5}{2}+\frac{5}{4}+\frac{5}{8}+\ldots\right\rfloor \\
& =2+1+\ldots+0+0+\ldots \\
& =3
\end{aligned}
$$

2.4.2 Proof

Note: If $p>n$, then $p \nmid n!$ and $\left\lfloor\frac{n}{p^{i}}\right\rfloor=0$ for all i.
If $p \leq n$ then the number of integers up to n divisible by p is $\left\lfloor\frac{n}{p}\right\rfloor$
Each multiple of p contributes one factor.
Each multiple of p^{2} contributes one more, thus there are $\left\lfloor\frac{n}{p^{2}}\right\rfloor$ such terms.
Each multiple of p^{i} contributes an additional factor, so there are $\left\lfloor\frac{n}{p^{i}}\right\rfloor$ such numbers.

2.5 Lemma

Let $f(x)=\frac{x}{\ln (x)}$ then
$f^{\prime}(x)>0$ for $x>e$
$f(x-2)>\frac{1}{2} f(x)$ when $x \geq 4$
$f\left(\frac{x+2}{2}<\frac{15}{16} f(x)\right.$ when $x \geq 8$

2.5.1 Proof

$f^{\prime}(x)=\frac{\ln (x)-x \frac{1}{x}}{(\ln (x))^{2}}=\frac{\ln (x)-1}{(\ln (x))^{2}}>0$ if $x>e$
Note: if $x \geq 4, x-2 \geq \frac{x}{2}$
$f(x-2)=\frac{x-2}{\ln (x-2)}>\frac{x}{2 \ln (x-2)}>\frac{x}{2 \ln (x)}$
It can be seen that $\frac{x}{2 \ln (x)}=\frac{1}{2} f(x)$

2.6 Proof of Chebyshev's Theorem

Take $c_{1}=\frac{\ln (2)}{2}$ and $c_{2}=30 \ln (2)$
Goal: Prove that $\left(\frac{\ln (2)}{2}\right)\left(\frac{x}{\ln (x)} \leq \pi(x) \leq 30 \ln (2)\left(\frac{x}{\ln (x)}\right.\right.$
Trick: Consider middle binomial coefficient $\binom{2 n}{n}$
$\binom{2 n}{n}=\frac{2 n!}{n!n!}$ which is an integer.
Every prime number bigger than n but less than $2 n$, that is $n<p<2 n$ must divide $\binom{2 n}{n}$
Let $P_{n}=\Pi_{n<p<2 n} p$
Then $P_{n} \left\lvert\,\binom{ 2 n}{n}\right.$
Thus $P_{n} \leq\binom{ 2 n}{n}$
On the other hand, every prime $n<p<2 n$ is bigger than n so
$P_{n}=\Pi n<p<2 n p>n^{\pi(2 n)-\pi(n)}$ because $n<p<2 n=\pi(2 n)-\pi(n)$
So $n^{\pi(2 n)-\pi(n)}<P_{n} \leq\binom{ 2 n}{n}$
Define r_{p} by $p^{r_{p}} \leq 2 n<p^{r_{p}+1}$
Example: $n=20, p=5$
$5^{r_{5}} \leq 2(20)<5^{r_{5}+1}$
$r_{5}=2$

The number of times that $p \mid(2 n)$! is $\sum_{i=1}^{r_{p}}\left\lfloor\frac{2 n}{p^{i}}\right\rfloor$ where r_{p} captures the last item in this sum that is nonzero.
Same for n !
The number of times $p \mid n$! is $\sum_{i=1}^{r_{p}}\left\lfloor\frac{n}{p^{i}}\right\rfloor$
The number of times $p\binom{2 n}{n}=\frac{2 n!}{n!n!}$ is
$\sum_{i=1}^{r_{p}}\left\lfloor\frac{2 n}{p^{i}}\right\rfloor-2 \sum_{i=1}^{r_{p}\left\lfloor\frac{n}{p^{i}}\right\rfloor}=\sum_{i=1}^{r_{p}}\left(\left\lfloor\frac{2 n}{p^{i}}\right\rfloor-2\left\lfloor\frac{n}{p^{i}}\right\rfloor\right.$
By earlier lemma $0 \leq\lfloor 2 x\rfloor-2\lfloor x\rfloor \leq 1$
$\sum_{i=1}^{r_{p}}\left(\left\lfloor\frac{2 n}{p^{i}}\right\rfloor-2\left\lfloor\frac{n}{p^{i}}\right\rfloor\right) \leq r_{p}$
Define $Q_{n}=\Pi_{p<2 n} p^{r_{p}}$
Then $\left.\binom{2 n}{n} \right\rvert\, Q_{n}$ since every prime less than $2 n$ appears more times in Q_{n} than it does in $\binom{2 n}{n}$
Since $p^{r_{p}}<2 n$ then $Q_{n}=\Pi_{p<2 n} p^{r_{p}}<\Pi_{p<2 n}(2 n)$
$\Pi_{p<2 n}(2 n)=(2 n)^{\pi(2 n)}$
$\binom{2 n}{n} \leq Q_{n}<(2 n)^{\pi(2 n)}$

