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1 October 28

1.1 Analysis of π(n)

π(x) is the count of the number of primes less than or equal to x.
Last time we talked about how limx→inf π(x) = inf

1.1.1 New Proof

Consider 1
1− 1

2

= 1 + 1
2 + 1

4 + 1
8 + ... =

∑inf
i=0

1
2

i

1
1− 1

3

= 1 + 1
3 + 1

9 + 1
27 + ... =

∑inf
i=0

1
3

i

Multiply these together:
( 1
1− 1

2

)( 1
1− 1

3

) = 2( 3
2 = 3

(1 + 1
2 + 1

4 + 1
8 + ...)(1 + 1

3 + 1
9 + 1

27 + ...)
= (1 + 1

2 + 1
3 + 1

4 + ... =
∑

n is not divisible by any prime bigger than 3
1
n

( 1
1− 1

2

)( 1
1− 1

3

) 1
1− 1

5

=
∑

n is not divisible by any prime bigger than 5
1
n

Πp≤N ( 1
1− 1

p

) =
∑

n is not divisible by any primes bigger than N
1
N >

∑
n≤N

1
n

Calculus 2 tells us the Harmonic series diverges so as N → inf, Πp≤N ( 1
1− 1

p

→ inf

thus this product must have infinitely many primes to multiply

We want to use this idea to say more about π(x).

1.2 Theorem

For any positive integer k, we have
π(x)
x ≤ ϕ(k)

k + 2k
k
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1.2.1 Examples

Consider k = 6 ϕ(6) = 2 so all the primes besides 2,3 are either 1 or 5 (mod 6).
π(x)
x ≤ 2

6 + 2(6)
x

π(x)
x ≤ 1

3 + 12
x

1.2.2 Proof

Let M = bxk c
Divide the interval [1, x] into M intervals of length k and one final shorter
interval.
We want to count the primes smaller than x.
Between 0 and k, there is at most k primes.
Between k and 2k, there are k numbers forming a complete residue class (mod
K).
Any prime p in this interval has gcd(p, k) = 1 so at most ϕ(k) primes.
The last interval can’t have more than k primes.
Total count π(x) ≤ k + ϕ(k) + ϕ(k) + ...+ k ≤ 2k + (M − 1)ϕ(k)
Note that M = bxk c so M ≤ x

k which implies kM ≤ x, thus k(M − 1) ≤ x
So

π(x)

x
≤ 2k + (M − 1)ϕ(k)

x

≤ 2k

x
+

(M − 1)ϕ(k)

x

≤ 2k

x
+

(M − 1)ϕ(k)

(M − 1)k

≤ 2k

x
+
ϕ(k)

k

1.3 Theorem

limx→inf
π(x)
x = 0

The proportion of integers that are prime trends to zero as x approaches infinity.
Our goal is to show that for any ε > 0, there exists and N so that if x ≥ N ,

then π(x)
x < ε

1.3.1 Proof

Fix ε > 0
We want π(x)

x < ε for all x ≥ N for some N to be determined.

We know π(x)
x ≤ 2k

x + ϕ(k)
k

Goal: Show that 2k
x < ε

2 and ϕ(k)
k < ε

2
Suppose k = p1p2...pr is the product of the first r primes.
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Then

ϕ(k)

k
=
k(1− 1

p1
)(1− 1

p2
)...(1− 1

pr
)

k

= (1− 1

p1
)(1− 1

p2
)...(1− 1

pr
)

= Πr
i=1(1− 1

pi
)

Recall: Πp<N ( 1
1− 1

p

>
∑
n<N

1
n

Πp<N (1− 1
p )−1 >

∑
n<N

1
n which looks like Πr

i=1(1− 1
pi

.
Take the reciprocal of both sides
Πp<N (1− 1

p < (
∑
n<N

1
n )−1. This sum diverges.

Lets pick N1 big enough so that (
∑
n<N

1
n )−1 < ε

2
Then we pick pr to be the smallest prime bigger than N1
ϕ(k)
k = Πp<pr (1− 1

p < Πp<N (1− 1
p ) < (

∑
n<N1

1
n )−1 < ε

2

Pick k = p1p2...pr, then ϕ(k)
k < ε

2 . We are halfway there.

Now we want 2k
x < ε

2

As long as 2k
ε
2
< x and N2 = 4k

ε < x holds, then 2k
x < ε

2

Now we let N = max(N1, N2)

If x > N then π(x)
x ≤ 2k

x + ϕ(k)
k

Using the k we chose,
π(x)
x < ε

2 + ε
2 so π(x)

x < ε which is what we wanted.

2 October 30

2.1 Analysis of π(n)

limx→inf
π(x)
x = 0

Most numbers are not prime

2.2 Prime Number Theorem

limx→inf
π(x)
x

ln(x)
= 1

2.3 Chebyshev’s Theorem

There exist constants c1, c2 such that
c1

x
ln(x) < π(x) < c2

x
ln(x)

2.3.1 Lemma

For any x, 0 ≤ b2xc − 2bxc ≤ 1
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2.3.2 Proof

x− 1 < bxc ≤ x
Multiply by 2:
2x− 2 < 2bxc ≤ 2x
Replace x with 2x:
2x− 1 < b2xc ≤ 2x
Bound b2xc − 2bxc below
b2xc − 2bxc > (2x− 1)− (2x)
b2xc − 2bxc > −1
Bound above: b2xc − 2bxc < 2x− (2x− 2)
b2xc − 2bxc < 2
Since b2xc − 2bxc is an integer strictly between −1 and 2, the only integer
possibilitiies in this case are 0 and 1. Thus,
0 ≤ b2xc − 2bxc ≤ 1

2.4 Theorem

The number of times that p divides n! is
∑inf
i=1b

n
pi c

2.4.1 Example

5! = 5 · 4 · 3 · 2 · 1 = 120 = 23(3)(5)
2 divides 120 3 times.

inf∑
i=1

b 5

2i
c = b5

2
+

5

4
+

5

8
+ ...c

= 2 + 1 + ...+ 0 + 0 + ...

= 3

2.4.2 Proof

Note: If p > n, then p - n! and b npi c = 0 for all i.

If p ≤ n then the number of integers up to n divisible by p is bnp c
Each multiple of p contributes one factor.
Each multiple of p2 contributes one more, thus there are b np2 c such terms.

Each multiple of pi contributes an additional factor, so there are b npi c such
numbers.

2.5 Lemma

Let f(x) = x
ln(x) then

f ′(x) > 0forx > e
f(x− 2) > 1

2f(x) when x ≥ 4
f(x+2

2 < 15
16f(x) when x ≥ 8
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2.5.1 Proof

f ′(x) =
ln(x)−x 1

x

(ln(x))2 = ln(x)−1
(ln(x))2 > 0 if x > e

Note: if x ≥ 4, x− 2 ≥ x
2

f(x− 2) = x−2
ln(x−2) >

x
2ln(x−2) >

x
2ln(x)

It can be seen that x
2ln(x) = 1

2f(x)

2.6 Proof of Chebyshev’s Theorem

Take c1 = ln(2)
2 and c2 = 30ln(2)

Goal: Prove that ( ln(2)2 )( x
ln(x) ≤ π(x) ≤ 30ln(2)( x

ln(x)

Trick: Consider middle binomial coefficient
(
2n
n

)(
2n
n

)
= 2n!

n!n! which is an integer.
Every prime number bigger than n but less than 2n, that is n < p < 2n must
divide

(
2n
n

)
Let Pn = Πn<p<2np
Then Pn|

(
2n
n

)
Thus Pn ≤

(
2n
n

)
On the other hand, every prime n < p < 2n is bigger than n so
Pn = Πn < p < 2np > nπ(2n)−π(n) because n < p < 2n = π(2n)− π(n)
So nπ(2n)−π(n) < Pn ≤

(
2n
n

)
Define rp by prp ≤ 2n < prp+1

Example: n = 20, p = 5
5r5 ≤ 2(20) < 5r5+1

r5 = 2

The number of times that p|(2n)! is
∑rp
i=1b 2npi c where rp captures the last item

in this sum that is nonzero.
Same for n!
The number of times p|n! is

∑rp
i=1b npi c

The number of times p|
(
2n
n

)
= 2n!

n!n! is∑rp
i=1b 2npi c − 2

∑rp
i=1b npi c =

∑rp
i=1(b 2npi c − 2b npi c

By earlier lemma 0 ≤ b2xc − 2bxc ≤ 1∑rp
i=1(b 2npi c − 2b npi c) ≤ rp

Define Qn = Πp<2np
rp

Then
(
2n
n

)
|Qn since every prime less than 2n appears more times in Qn than it

does in
(
2n
n

)
Since prp < 2n then Qn = Πp<2np

rp < Πp<2n(2n)
Πp<2n(2n) = (2n)π(2n)(
2n
n

)
≤ Qn < (2n)π(2n)
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