Graph Theory Class Notes

taken by Will Thornton

May 8, 2018

1 When can a graph be drawn on a 2d-plane so that no two edges cross?

Euler's Identity: IF a graph is drawn in the plane with n vertices and m edges and it divides the plane into r regions, then $n-m+r=2$

Any time we can draw a graph in the plane we can also draw it on a sphere (and vice-versa)

Idea: Draw the graph on the plane
One to one map of points onto the sphere (except the north pole) to the plane
Using Euler's Identity we prove that if G is a planar graph with n vertices, and m edges then $M<=3 n-6$

Corollary: Any planar graph mnust have at least wone vertex of degree less than 6 . Proof: Suppose for contradiction that such a graph exists (planar, every vertex has degree of at least 5). First theorem of graph theory tells us that $2 m=\sum_{v \in G} \operatorname{deg}(v)>=\sum_{v \in G} 6$ So $2 m>=6 n$
$m>=3 n$
So $\mathrm{m}_{i}=3 \mathrm{n}$, but for a planar graph we must have $\mathrm{m}_{\mathrm{i}}=3 \mathrm{n}-6$, which is a contradiction. This means k_{7} is not planar (Every vertx has degree 6)

Theorem: k_{5} is not planar
Proof: k_{5} has $\mathrm{n}=5, \mathrm{~m}=10$
check: $10>9=(3 * 5-6)$
So inequality $\mathrm{m} \mathbf{i}=3 \mathrm{n}-6$ does not hold and k_{5} cannot be drawn in teh plane
Note: k_{6} is also not planar because it has k_{5} as a subgraph
Preposition: If G has a subgraph H that is not planar then G is also not planar
Can we use this to prove $K_{3,3}$ is not planar? (The 3 utilities problem)
$\mathrm{n}=6, \mathrm{~m}=9$

Take $3(n)-6=18-6=12 \neq 9$
This graph doesn't have too many edges, so to prove that $K_{3,3}$ is not planar we have to work a little harder
What if $K_{3,3}$ was planar? How many regions would it have?
Euler's identitiy sayas $\mathrm{n}-\mathrm{m}+\mathrm{r}=2$
$6-9+r=2$
$\mathrm{r}=5$
If $K_{3,3}$ could be drawn in the plane it must have 5 regions
$K_{3,3}$ does not have any 3 cycles in it, so none of the regions can be triangles
say these 5 regions are surrounded by $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ edges each
$K_{3,3}$ doesn't have any bridges so
$2 m=\sum_{i=1}^{5} m_{i}>=\sum_{i=1}^{5} 4=5(4)=20$
since $2 \mathrm{~m}=18$ is not greater than $20, K_{3,3}$ cannot be planar
Summarize: Both k_{5} and $K_{3,3}$ cannot be planar
Any graph with one of these as a subgraph also cannot be planar
Say H is a subdivision of G if H can be obtained by adding extra vertixes of degree 2 along the edges of G

Ex: let G be K_{3}
then $\mathrm{H}=$

is a subdivision of G
Kuratowski's Theorem: A graph G can be drawn in the plane without crossing edges if and only if it does not have a subgraph which is a subdivision of either K_{5} or $K_{3,3}$

Ex: Prove that the peterson graph is non planar
There is no way that a subgraph of the peterson graph could be a subdivision of K_{5} because the peterson graph is 3 regular and K_{5} is 4 regular

$K_{3,3}$ is a subdivision of this subgraph of the peterson graph, so the peterson graph is not planar

The 5 sons problem could be solved with a single bridge (not a graph theoretic bridge) Adding a bridge is the same thing topologically as drawing the graph on a torus (donut) instead.

For any graph yuou can draw it on some surface as long as you have enough holes.
Call the number of holes in a surface the genus of the surface
For any graph G we can ask what is the minimum genus required to draw the graph without crossings?
Denote this by $\gamma(G)$
$\gamma\left(k_{4}\right)=0$
$\gamma\left(k_{5}\right)=1$
$\gamma\left(k_{3,3}\right)=1$

