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Recall from last class, we ended with the first half of the proof for Hall’s
Matching Theorem. We will start by continuing that proof.

Proof: Case 2: Otherwise, there exists some subset x ∈ U with |X| = |N(X)|.
Note that |X| > |U| = k + 1 and every subset of X satisfies the conditions of the
theorem so by the induction hypothesis, we can find a matching from X to N(X)
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This picture is true for any subset of our X(right) and out N(X)(left) of vertices.
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We still need to show a matching on the vertices not in X. From U - X to V -
N(X).

Since |X| ≥ 1, this means that |U - X| ≤ k. We need to show that U - X still
satisfies the hypothesis of the theorem. We need to show that for every S⊂ U - X,
that |S|≤ |N(S) - N(X)|. We will call S’ = N(S) - N(X). By the original assumption
of the theorem, |N∪X|≤ |N(S∪X)|.

S and X are disjoint so,
|S| + |X| = |S∪X| ≤ |N(S∪X)| = |N(S)∪N(X)|
= |S’∪ N(X)|
= |S’| + |N(X)|

Since |X| = |N(X)|, we have that |S| ≤ |S’|. So G - (X∪N(X)) is a bipartite graph
that still satisfies the conditions of the theorem. By the induction hypothesis, there
exists a matching.

So by combining this matching with the one from X to N(X), we get a match-
ing from U to V. �

We can still talk about matchings for graphs that are not bipartite. In this case,
a matching is often called an independent edge set, meaning a subset of the edges
where no two edges have a vertex in common.

Def: A maximal independent edge set is an independent edge set of maximal
size. We denote this by α’(G).

Def: An edge cover of G is a subset of edges where every vertex is part of at
least one edge. β ’(G) is the size of the minimal edge cover of G.
Example: α’(G) = 2, β (G) = 3
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Test these two definitions on Kn, Cn, Sn

α’(Kn) =
⌊n

2

⌋
,β (Kn) =

⌈n
2

⌉
,α’(Cn) =

⌊n
2

⌋
,β (Cn) =

⌈n
2

⌉
,α’(Sn) = 1,

β (Sn) = n - 1.

Thm: If G is a graph of order n with no isolated vertices, then α ′(G) + β ’(G) = n.

Proof: Suppose G is a graph with no isolated vertices. First, supposeα’(G) =
k. So there exist k independent edges in the graph. 2k of the vertices are covered
by these edges. The remaining n-2k vertices can be covered by picking one edge
for each vertex
so β ’(G) ≤ k + (n - 2k)
so α’(G) + β ’(G) ≤ k + k + (n - 2k) = 2k + (n - 2k) = n
so α’(G) + β ’(G) ≤ n.

It remains to show that α’(G) + β ’(G) ≥ n.

Suppose that β ’(G) = ` and X is an edge cover of G of size `. Take the sub-
graph of G induced by X. F = G[X], so F has order n.

Observation: F can not have any trail of length 3 or more.

Suppose it did, then the middle edge is redundant. We can remove it and still
have an edge cover. So F has no cycles, so F is a forest. Any forest with n - k
edges has k components, so ` = n - (n - `) (size of F). So F must have n-` compo-
nents.

Pick one edge from each component of F. These edges are all independent.
α’(G) ≥ n - `
so α’(G) + β ’(G) ≥ n - ` + ` = n. �
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