Graph Theory

Brendan Satmary

April 24th, 2018

Recall from last class, we ended with the first half of the proof for Hall's Matching Theorem. We will start by continuing that proof.

Proof: Case 2: Otherwise, there exists some subset $x \in U$ with |X| = |N(X)|. Note that |X| > |U| = k + 1 and every subset of X satisfies the conditions of the theorem so by the induction hypothesis, we can find a matching from X to N(X)

This picture is true for any subset of our X(right) and out N(X)(left) of vertices.

0	•	AA1A
- V 1	nrina	<i>2</i> /11 X
v)	צווות	2018
~	0	

Graph Theory

We still need to show a matching on the vertices not in X. From U - X to V - N(X).

Since $|X| \ge 1$, this means that $|U - X| \le k$. We need to show that U - X still satisfies the hypothesis of the theorem. We need to show that for every $S \subset U - X$, that $|S| \le |N(S) - N(X)|$. We will call S' = N(S) - N(X). By the original assumption of the theorem, $|N \cup X| \le |N(S \cup X)|$.

S and X are disjoint so, $|S| + |X| = |S \cup X| \le |N(S \cup X)| = |N(S) \cup N(X)|$ $= |S' \cup N(X)|$ = |S'| + |N(X)|

Since |X| = |N(X)|, we have that $|S| \le |S'|$. So G - $(X \cup N(X))$ is a bipartite graph that still satisfies the conditions of the theorem. By the induction hypothesis, there exists a matching.

So by combining this matching with the one from X to N(X), we get a matching from U to V.

We can still talk about matchings for graphs that are not bipartite. In this case, a matching is often called an independent edge set, meaning a subset of the edges where no two edges have a vertex in common.

Def: A maximal independent edge set is an independent edge set of maximal size. We denote this by $\alpha'(G)$.

Def: An edge cover of G is a subset of edges where every vertex is part of at least one edge. $\beta'(G)$ is the size of the minimal edge cover of G. **Example:** $\alpha'(G) = 2$, $\beta(G) = 3$

Test these two definitions on K_n , C_n , S_n

$$\alpha'(K_n) = \left\lfloor \frac{n}{2} \right\rfloor, \beta(K_n) = \left\lceil \frac{n}{2} \right\rceil, \alpha'(C_n) = \left\lfloor \frac{n}{2} \right\rfloor, \beta(C_n) = \left\lceil \frac{n}{2} \right\rceil, \alpha'(S_n) = 1,$$

$$\beta(S_n) = n - 1.$$

Thm: If G is a graph of order n with no isolated vertices, then $\alpha'(G) + \beta'(G) = n$.

Proof: Suppose G is a graph with no isolated vertices. First, suppose $\alpha'(G) = k$. So there exist k independent edges in the graph. 2k of the vertices are covered by these edges. The remaining n-2k vertices can be covered by picking one edge for each vertex

so $\beta'(G) \le k + (n - 2k)$ so $\alpha'(G) + \beta'(G) \le k + k + (n - 2k) = 2k + (n - 2k) = n$ so $\alpha'(G) + \beta'(G) \le n$.

It remains to show that $\alpha'(G) + \beta'(G) \ge n$.

Suppose that $\beta'(G) = \ell$ and X is an edge cover of G of size ℓ . Take the subgraph of G induced by X. F = G[X], so F has order n.

Observation: F can not have any trail of length 3 or more.

Suppose it did, then the middle edge is redundant. We can remove it and still have an edge cover. So F has no cycles, so F is a forest. Any forest with n - k edges has k components, so $\ell = n - (n - \ell)$ (size of F). So F must have n- ℓ components.

Pick one edge from each component of F. These edges are all independent. $\alpha'(G) \ge n - \ell$ so $\alpha'(G) + \beta'(G) \ge n - \ell + \ell = n$.