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1 Chapter 7

The transition matrix of a digraph is the matrix formed by creating a n x n
matrix in which position ij contains the entry od(i) if there is an edge from i to
j and 0 otherwise.
Example 1:

has the following transition matrix:
0 1

2
1
2 0

0 0 1 0
0 0 0 1
1
2

1
2 0 0


If we square T, we get a matrix of the probabilities of stepping from vertex

i and being at vertex j 2 steps later.
If we raise this matrix to larger numbers we see that the columns trend toward
the same values. That tells us that for many steps, where you start does not
matter for this graph.
Example 2:

has the following transition matrix:
0 1 0 0
1
2 0 0 1

2
1 0 0 0
0 1

2
1
2 0
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If we raise this transition matrix to higher powers, the columns do not trend
toward certain values. Instead, the columns alternate between sets of values on
successive exponents.
This is because if we start in U = A,D then after an even number of steps, we
are in U and after an odd number of steps, we are in V = B,C.

Definition: A digraph is called ergodic is there exists an integer N such
that for every n > N , there is a walk of length n between any 2 vertices of the
digraph.
(N is the minimum number of steps before it is possible to get between any 2
vertices in exactly n steps.)

Example 1 is ergodic, example 2 is not.

Theorem: If G is an ergodic digraph and T is the transition matrix for
G, then as K →∞, the entries in each column converge to the same number.
(This is the probability of being at that vertex).

2 Chapter 8: Matchings

For a bipartite graph with partition U, V a matching of U is a way to choose
edges of the graph so that each vertex of U is adjacent to one edge and every
vertex of V to at most one edge.
Example: Consider the following graph of children and the books they want to
read.

Is there a way to give each kid in the graph one of the books that they want
(Edges from kids to books they want) so that every kid gets a book?

The bipartite graph represents the possible values (range) of the elements in
the first half (Domain).
Is there a injective function F from U to V such that F (u) = v only if the edge
uv was in the graph?
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First observation: In order for a matching to exist, we need |U | ≤ |V |.

Consider the following graph:

In this graph, there are 5 kids that only like 4 books between them so we cannot
find a matching.

If X ⊂ V (G) then N(X) = {vertices connected to x in G}
Example: X = {Alice,Kim} → N(X) = {2, 5, 6}
(N for neighbors)

New condition: if X ⊂ U , then to have a matching, we must have that
|X| ≤ |N(X)|.

Hall’s Matching Theorem: If G is bipartite with partition U, V then
there is a matching from U to V if and only if for every subset X ⊂ U, |X| ≤
|N(X)|.

Proof: By strong induction on the number of vertices in U .
Base Case: |U | = 1
Supposing that for every subset X ⊂ U , the size |X| ≤ |N(X)|.
This means the one vertex in U is connected to something in V so there is a
matching.
Induction Step: Assume that for some integer k we have proven that for
any bipartite graoh G = (U, V ) where the size of U is at most k satisfying the
conditions of the theorem there exists a matching.
Now suppose that |U | = k + 1 and U satisfies the condition that for all X ⊂
U, |N(X)| ≥ |X|.
Case 1: The stronger statement that for every X ⊂ U , the inequality
|X| ≤ |N(X)| holds.
Pick some vertex u ∈ U and pick a vertex v ∈ V connected to U.
Consider the graph G\{u, v} = G1
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Now U − {u} has the size K.
For any subset X ⊂ U
NG1(X) ⊂ NG(X)\{v}
so |X| ≤ |NG1(X)|
so we can find a matching in G1 by induction hypothesis.

proof completed in next class
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