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Review
Theorem: A digraph is strong if and only if it has no bridges.
Proof. –> A strong digraph cannot have a bridge because it is only possible to walk across the
bridge in one direction. Q.E.D

Theorem: A nontrivial graph has a strong orientation if and only if it has no bridges.
Proof. –> A strong digraph cannot have a bridge because it is only possible to walk across the
bridge in one direction.

<– Suppose G is a nontrivial graph with no bridges in it. (Think about a tree—it has bridges.
Therefore, this graph G has a lot of cycles.) Let C be a cycle in G. Orient all the edges around
the cycle so that it is possible to get to all the vertices in this cycle. It may be that vertices on
C are connected to each other. These edges can be assigned arbitrarily. Let C be a subset of the
vertices of the graph that have thus far been assigned directions to their adject edges in such a
way that it is possible to get between any two vertices of S. At the beginning, S=C. If S is not the
entire graph then there exist vertices of the graph not in S. In particular, we can pick some vertex v
that is not in S but is adjacent to a vertex in S. The edge connecting V to S is part of some cycle D.

D = v1, v2, v3 . . . , vk ∈ S

Let vi be the first element of D that is part of S. Orient the edges on D with
V → V1, V1 → V2, Vi−1 → Vi ∈ S. Orient the edge Vk → V .Now, it is possible to walk from V. Any
other vertex on D, to any other vertex of S and vice versa. Repeat this until there are no more
vertices left not in S. Q.E.D

7.2 Tournaments
Def: A Tournament is an orientation of a complete graph. Therefore, a tournament can be defined
as a digraph such that for every pair u,v of distinct vertices, exactly one of (u,v) and (v,u) is an
arc.. (meaning u defeats team v).

• Imagine we have n teams that pay in a round robin tournament so that each team plays every
other team at last once without ties.
• View this as an orientation of the complete graph Kn in which each edge is directed from the
winning team to the losing team.

Example
4 teams - ABCD
A defeats B
A defeats C
D defeats A
B defeats C
B defeats D
C defeats D
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Say that two tournaments S, T are isomorphic if they have the same order and
there exists a function φT → S such that if V →W in T then φ(v)→ φ(u) in S.

How many tournaments up to isomorphism are there on n teams?
2 teams:

3 teams:

4 teams:

Suppose first that one team wins all off its games.

What if some team loses all of its games?

The only remaining possibility for a tournament were no team that either wins or loses all of
its games.

We call a tournament transitive if whenever u→ v and v → w then u→ w.

Theorem: A tournament is transitive if and only if it does not contain any cycles.
Proof: In book.
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Theorem: If v is a vertex in a tournament with maximal out degree then
Proof. Let v be a vertex in a tournament T with maximal out degree od(v) = K. Then there are
K vertices v1, v2...vk that v connects to.

If these are all the vertices in T then (v, u) ≤ 1 for all u.Otherwise there exists vertices w1, w2...w
such that w1 are connected to v.
Suppose that (v,w) > 2. This means that w is connected to all of the vertices v1, v2..etc that v
was connected to and w is also connected to v.

Thus, od(wi) ≥ k + 1 which contradicts v having maximal out degree.Q.E.D

Hamiltonian Path
Def: A Hamiltonian Path in a tournament is a directed path going through all the vertices of the
tournament.

Theorem: Every tournament contains a Hamiltonian path.
Proof. Let P be a directed path of maximal length in a tournament T.

P = {v1, v2...vk}

Suppose P is not Hamiltonian. There exists a vertex w not in P since w cannot go at the beginning
or end of P, we must have that v1 → vw, w → vm.

Let v1 be the first vertex such that w → v1but vi+1 → w. Then we can make a longer directed
path,

(v1, v2...vi−1, w, v...vk)

Q.E.D

Theorem: If P is a strong tournament (nontrivial) then every vertex v ∈ T is part of a tri-
angle.
Proof. Let u be the set of vertices that v is connected to andw the set of vertices connected to v.

Since T is strong, u and v are nonempty and there is at least one edge from uto w, say it goes
from u to w.

So v → u→ w is a triangle. Q.E.D
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