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Connectivity Both of the below graphs are connected, however one of the
graphs is more connected than the other:

Cut Vertices- A vertex V in a connected graph G, is a cut vertex if G-V is no
longer connected.

If a graph G has a bridge e, then one of its ends V is a cut vertex if and
only if its degree is at least 2
Proof: If degree (V)=1, then removing the vertex does not disconnect the graph

Other direction (proof by contradiction): Suppose V has a degree of at least 2
and is not a cut vertex. V is connected to one vertex U on the other end of edge
e, and at least one other vertex W. Since G-V is still connected, there exists
another path from W to U in G-V. This path along with e and the edge from
V to W forms a cycle, this contradicts the previous assumption that e is a bridge.

Theorem: If G is connected and has order at least 3, and contains a bridge, it
contains a cut vertex.
Proof: Let e be a bridge in G. Since G is connected and has at least 3 vertices,
both ends can not have degree 1, so one of the ends is a cut vertex.

Note: graphs can contain cut vertices, without having a bridge.
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Observation: In the above graph, the vertex C is a cut vertex, but there is no
bridge

Theorem: Suppose that V is a cut vertex in G and U and W are different
components of G-V. Then the vertex V must lie on every path from U to W in
G.
Proof: Suppose that V is a cut vertex of G. U and W are different components
of G-V. Suppose for contradiction that there exists a path from U to W in G
that does not contain V. Thus the path still exists in G-V. This contradicts U
and W belonging to different components on G-V.

Theorem: V in G is a cut vertex if and only if there exists vertices U and
W distinct from V such that V lies on every path from U to W.
Proof: First direction: Suppose V is a cut vertex, then G-V is disconnected.
Let U and W be two vertices in different components G-V, proved by the last
theorem.
Other direction: Suppose a vertex V exists on every path from U to W in G for
some vertices U and W. Then there does not exist a path from U to W in G-V.
So G-V is disconnected, thus V is a cut vertex by definition.

Theorem: Let G be a connected graph and U be any vertex in G. Let V
be the furthest vertex from U in G. Then vertex V is not a cut vertex
Proof: Suppose G is a connected graph and U is any vertex in G, and V is
the furthest vertex from U. Suppose for contradiction that V is not a cut vertex.

Then G-V is disconnected Let W be a vertex in a different component of G-V
from U. Then V must lie on every path from U to W by the definition of a cut
vertex. However, this would mean the path from U to W is greater than the
path from U to V, this contradicts our previous assumption that U and V are
as far apart as possible.

Corollary: Every non-trivial connected graph has at least 2 vertices that are
not cut vertices.
Proof: Take any vertex U in G. Let V be the vertex furthest from U that is
not a cut vertex. Now take the vertex W that is furthest from V, it also can
not be a cut vertex. So we have at least 2 uncut vertices.

Notice: This corollary is sharp since any path no matter how long contains
only 2 vertices that are not cut vertices. This is because a path always has two
end vertices.

non-separable- A graph is called non-separable if it does not contain any
cut vertices.

Cn= non-separable
Kn= non-separable
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Pn= non-separable if n>=3

Theorem: A graph of order at least 3 is non-separable if and only if every
two vertices in G lies on a common cycle

Proof: First direction: Suppose first that any 2 vertices are on a common
cycle. Suppose for contradiction that G is not non-separable. This means that
G contains a cut vertex, lets call this vertex V.
Then G-V is a disconnected graph, let U and W be in different components of
G-V.

By our assumption U and W are on a common cycle...

U W

V

Then there are 2 disjoint paths from U to W, V cannot lie on both of them, so
V is not a cut vertex.

Other direction: Now suppose G is non-separable, but suppose for contradiction
that there exists pairs of vertices in G that are not on a common cycle. Lets take
two of these vertices not on a common cycle, so that they are as close together
as possible.
Call these vertices U and V, say d(V,U)=K. First note that K 6= 1 since then
the edge is the only way to get from U to V. If this is the case, that would make
the edge a bridge, which would lead to the edge connecting U and V to be a
bridge. This alludes to a cut vertex, which is not non-separable.
So K>=2
Let U,U1,U2,...,Uk=V be a path from U to V. Consider Uk−1 the last vertex
before V on this path.

U
Uk−1

V

So since U and Uk−1 are 1 closes than U and V, they do lie on a common cycle
by our assumption that U and V are the closest vertices that do not have a
common cycle.
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U
Uk−1

V

C

Notice the edge from Uk−1 to V cannot be a bridge without creating cut vertices,
thus it is not a bridge and there must exist some path from V to U that does
not use this edge.

U
Uk−1

V

C

X

Let X be the first vertex along this path that is common with cycle C, containing
U, and Uk−1. Now the cycle from U to Uk−1 around C followed by the edge to
V, then the path from V to X, and last the other side of C from X to U forms
a cycle from U to V. Thus there exists a cycle that contains U and V. This
contradicts our assumption that no such cycle existed.
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