## Math 451 Notes

## Erik Klapwyk

## 3 - 27 - 18

 $\kappa(\mathbf{G}) =$  minimum number of vertices necessary to remove to make a graph disconnected.

 $\lambda(G) = minimum$  number of of edges required to make a graph disconnected.

Theorem:  $\kappa(\mathbf{G}) \leq \lambda(\mathbf{G}) \leq \delta(\mathbf{G})$ 

Theorem: If G is a cubic graph then  $\kappa(G) = \lambda(G)$ . Recall that a cubic graph is a graph where every vertex has degree 3.

Note that in such a graph  $\delta(G) \leq 3$  so  $0 \leq \kappa(G) \leq 3$ .

Draw a picture of a cubic graph where  $\kappa(G) = 0, 1, 2, 3$ .





This is a a graph of  $\kappa = 0$ 



This is a a graph of  $\kappa({\rm G})=3$ 



This is a a graph of  $\kappa(G) = 2$ 



This is a graph of  $\kappa(\mathbf{G})=1$ 

Theorem: If G is a cubic a cubic graph then  $\kappa(G)=\lambda(G).$ 

Proof: Since  $\delta(G) = 3$  then the possibilities for  $\kappa(G) = 0, 1, 2, 3$ . This is a proof by cases.

Case 0: Suppose  $\kappa(G) = 0$ . This means G is disconnected so no edges need to be removed to disconnect it.  $\lambda(G) = 0 = \kappa(G)$ .

Case 3: Suppose  $\kappa(G) = 0$ . Recall that  $\kappa(G) \leq \lambda(G) \leq \delta(G)$ . Since  $\delta(G) = 3$  this means  $\lambda(G) = 3 = \kappa(G)$  as well.

Case 1: Suppose  $\kappa(G) = 1$ .



This means that G has a cut vertex v. Removing v creates two disconnected components A and B. So there exists an edge connecting v to A and v to B. Since 3 edges total connect to v one of these components is connected to v by a single edge removing this edge disconnects the graph so  $\Lambda(G) = 1 = \kappa(G)$ .

Case 2: Suppose  $\kappa(G) = 2$ .



Suppose there exists two vertices u and v that can be removed to disconnect the graph into two components A and B.

If one of these components is connected to both u and v by a single edge then we can remove those edges to disconnect the graph.

Otherwise one vertex is connected to one component by a single edge and the other is vertex is connected to the other component by a single edge and u and v are not connected. We can remove these two single edges to disconnect the graph.

Thus  $\lambda(G) \leq 2$ Since  $\lambda(G) \geq \kappa(G) = 2$ We have  $\lambda(G) = 2 = \kappa(G)$ 

Given two points u and v in a graph a uv-separating set S is a collection of vertices such that there is no path from u to v in G-S.

Def: A minimum uv separating set of smallest possible size. Say a collection of paths from u to v is internally vertex disjoint if no two of them have a vertex in common beside u and v.



The dotted lines are internal vertex disjoint paths.

Vertices 7 and 6 are uv spanning sets.

Menger's Theorem: For any graph G and any two vertices u and v the maximum number of internally vertex disjoint uv paths is equal to the size of a minimum uv separating set.

It is clear that the number of internally disjoint uv paths is at most the size of a minimum uv separating set. This is true because we need to remove one vertex from each of these paths to disconnect u from v.