Math 451 Notes

Erik Klapwyk
3-27-18

$\kappa(\mathrm{G})=$ minimum number of vertices necessary to remove to make a graph disconnected.
$\lambda(\mathrm{G})=$ minimum number of of edges required to make a graph disconnected.
Theorem: $\kappa(\mathrm{G}) \leq \lambda(\mathrm{G}) \leq \delta(\mathrm{G})$
Theorem: If G is a cubic graph then $\kappa(\mathrm{G})=\lambda(\mathrm{G})$. Recall that a cubic graph is a graph where every vertex has degree 3 .

Note that in such a graph $\delta(\mathrm{G}) \leq 3$ so $0 \leq \kappa(\mathrm{G}) \leq 3$.
Draw a picture of a cubic graph where $\kappa(\mathrm{G})=0,1,2,3$.

This is a a graph of $\kappa=0$

This is a a graph of $\kappa(\mathrm{G})=3$

This is a a graph of $\kappa(\mathrm{G})=2$

This is a graph of $\kappa(\mathrm{G})=1$

Theorem: If G is a cubic a cubic graph then $\kappa(\mathrm{G})=\lambda(\mathrm{G})$.

Proof: Since $\delta(G)=3$ then the possibilities for $\kappa(G)=0,1,2,3$. This is a proof by cases.

Case 0: Suppose $\kappa(\mathrm{G})=0$. This means G is disconnected so no edges need to be removed to disconnect it. $\lambda(\mathrm{G})=0=\kappa(\mathrm{G})$.

Case 3: Suppose $\kappa(\mathrm{G})=0$. Recall that $\kappa(\mathrm{G}) \leq \lambda(\mathrm{G}) \leq \delta(\mathrm{G})$. Since $\delta(\mathrm{G})=$ 3 this means $\lambda(\mathrm{G})=3=\kappa(\mathrm{G})$ as well.

Case 1: Suppose $\kappa(\mathrm{G})=1$.

This means that G has a cut vertex v. Removing v creates two disconnected components A and B . So there exists an edge connecting v to A and v to B . Since 3 edges total connect to v one of these components is connected to v by a single edge removing this edge disconnects the graph so $\Lambda(G)=1=\kappa(\mathrm{G})$.

Case 2: Suppose $\kappa(\mathrm{G})=2$.

Suppose there exists two vertices u and v that can be removed to disconnect the graph into two components A and B .
If one of these components is connected to both u and v by a single edge then we can remove those edges to disconnect the graph.
Otherwise one vertex is connected to one component by a single edge and the other is vertex is connected to the other component by a single edge and u and
v are not connected.
We can remove these two single edges to disconnect the graph.

Thus $\lambda(\mathrm{G}) \leq 2$
Since $\lambda(\mathrm{G}) \geq \kappa(\mathrm{G})=2$
We have $\lambda(\mathrm{G})=2=\kappa(\mathrm{G})$

Given two points u and v in a graph a uv-separating set S is a collection of vertices such that there is no path from u to v in G-S.

Def: A minimum uv separating set of smallest possible size.
Say a collection of paths from u to v is internally vertex disjoint if no two of them have a vertex in common beside u and v.

The dotted lines are internal vertex disjoint paths.
Vertices 7 and 6 are uv spanning sets.

Menger's Theorem: For any graph G and any two vertices u and v the maximum number of internally vertex disjoint uv paths is equal to the size of a minimum uv separating set.

It is clear that the number of internally disjoint uv paths is at most the size of a minimum uv separating set. This is true because we need to remove one vertex from each of these paths to disconnect u from v.

