MATH 451: Graph Theory

Rachel Beall

March 15, 2018

Recall:

- $\kappa(G)=$ minimum number of vertices necessary to remove to make a graph either disconnected or trivial.
- $\lambda(G)=$ minimum number of edges required to make a graph disconnected.

Example: Consider a country's transportation network.

1. Consider the "air traffic graph" where vertices are airports and edges are scheduled flights between them.
2. Also consider the highway graph where vertices are major cities and edges are the highways between them.

Which is the better measure of connectedness in each case?
In the first (1) case, $\kappa(G)$ is a better measure of connectedness.
For the second (2) case, $\lambda(G)$ is the better measure of connectedness.

Consider the graph G below:

$G-v$ is disconnected. In this graph, $\kappa(G)=1$ and $\lambda(G)=3$.

In general, $\lambda(G) \leq \delta(G)$ for the same reason.

Theorem: $\lambda\left(K_{n}\right)=n-1$.
Proof. $\lambda\left(K_{n}\right) \leq \delta\left(K_{n}\right)=n-1$. We still need to show that $\lambda\left(K_{n}\right) \geq n-1$.

Aside: If U is a vertex cut of G that is minimal $(|U|=\kappa(G))$ then $G-U$ is disconnected. So, $G-U$ has components $G_{1}, G_{2}, \cdots, G_{k}$. Note that if $u \in U$ then u is adjacent to a vertex in each of $G_{1}, G_{2}, \cdots, G_{k}$. If X is a minimal edge cut then $G-X$ has exactly two components, G_{1} and G_{2}, and every edge in X connects a vertex in G_{1} to a vertex in G_{2}.

Proof Cont. Suppose X is a minimal edge cut of K_{n}. Since X is minimal, it divides K_{n} into 2 components, G_{1} and G_{2}. Let's suppose: $\left|G_{1}\right|=j$ and $\left|G_{2}\right|=n-j$. Then, X contains every edge between a vertex of G_{1} and a vertex of G_{2}. Then X contains an edge corresponding to every pair of vertices in G_{1} / G_{2}. So, $|X|=j(n-j) \geq n-1$.

Theorem: $\kappa(G) \leq \lambda(G) \leq \delta(G)$.
Proof. $\lambda(G) \leq \delta(G)$
It remains to show that $\kappa(G) \leq \lambda(G)$. To do this, we break the proof into cases:
Case 1: $G=K_{n}$.

$$
\text { If } G=K_{n} \text { then } \kappa(G)=n-1 \text { and } \lambda(G)=n-1
$$

Case 2: G is disconnected.

$$
\lambda(G)=\kappa(G)=0
$$

Now we can assume G is a connected graph that is not the complete graph. Let's suppose G has order n and X is a minimum edge cut. So, $|X|=\lambda(G)$. Furthermore, $G-X$ has 2 components, G_{1} and G_{2}, such that $\left|G_{1}\right|=j$ and $\left|G_{2}\right|=n-j$.

Case 3 : Suppose X contains every edge between G_{1} and G_{2}.
Then, $|X|=j(n-j$) (by the last proof). Since this minimized when $j=1$, we get $\lambda(G)=n-1$. Since $\kappa(G) \leq n-1$ we get $\kappa(G) \leq \lambda(G)$.

Now we can assume that X does not connect every vertex of G_{1} to every vertex of G_{2}. Let $u \in G_{1}$ and $v \in G_{2}$ be vertices such that $u v \notin G$. Consider the diagram below:

G_{1}

We use this to construct a vertex cut U. For every edge in X, if u is one vertex of $e(e=u w$ in this case) we put the vertex on the other end of e (the vertex in G_{2}) and put that in U. Otherwise, if u is not one of the vertices of e, we put the vertex in the G_{1} side of e in $U . U$ contains one of the vertices on either end of every edge in $X .|U| \leq|X|$ and $G-U$ contains none of the edges in X. Note that $u, v \notin U$. So, G_{1} and G_{2} didn't get completely removed in $G-U$. Since $G-X$ was disconnected, there is no longer a path from u to v. So, $\kappa(G) \leq|U| \leq|X|=\lambda(G)$.

